can someone plz ans the c part of this question
Answers
Given:
Vertices of a ΔABC are A(2, 4), B(9, 4) & C(7, 11).
To find:
- To find the area, we can use the area of the triangle equation when 3 points are given.
- To find the value of BC, we can use the distance formula.
- To calculate the length of the ⊥ from A to BC, we use the area of a triangle formula. (1/2 × b × h)
--------------------
Solution for Part (i): Find the area of ΔABC.
ar(ΔABC) = ¹/₂ (x₁ (y₂ - y₃) + x₂(y₃ - y₁) + x₃(y₁ - y₂))
ar(ΔABC) = ¹/₂ (2 (4 - 11) + 9(11 - 4) + 7(4 - 4))
ar(ΔABC) = ¹/₂ (2 (-7) + 9(7) + 7(0))
ar(ΔABC) = ¹/₂ (-14 + 63)
ar(ΔABC) = ¹/₂ (49)
ar(ΔABC) = 24.5 sq.units.
--------------------
Solution for Part (ii): Calculate the length of BC.
x₁ ⇒ 9
x₂ ⇒ 7
y₁ ⇒ 4
y₂ ⇒ 11
⇒ BC = √[(x₂ - x₁)² + (y₂ - y₁)²]
⇒ BC = √[(7 - 9)² + (11 - 4)²]
⇒ BC = √[(-2)² + (7)²]
⇒ BC = √[4 + 49]
⇒ BC = √53 units.
--------------------
Solution for Part (ii): Calculate the length of the perpendicular drawn from A to BC.
⇔ Area(ABC) = 1/2 × b × h
⇔ 24.5 = 1/2 × √53 × h
⇔ 24.5 × 2 = h√53
⇔ 49 = h√53
⇔ h = 49/√53
⇔ h ≈ 6.73
--------------------
Final answers:
Solution (i) - 24.5 sq.units.
Solution (ii) - √53 units.
Solution (iii) - 6.73 units.