can someone solve this differential equation pls?
Attachments:
Answers
Answered by
1
Let y+1=u⇒dydx=dudx
dudx=x+ux−u=1+ux1−ux
Let v=ux⇒u=vx⇒dudx=v+xdvdx
v+xdvdx=1+v1−v
xdvdx=1+v1−v−v=1+v21−v
1−v1+v2dv=1xdx
∫(11+v2−v1+v2)dv=∫1xdx
tan−1v−12ln(1+v2)=ln|x|+C
2tan−1v−ln(1+v2)=2ln|x|+C
Substitute back: v=ux=y+1x
2tan−1(y+1x)=ln(1+(y+1)2x2)+ln(x2)+C
2tan−1(y+1x)=ln(x2+(y+1)2)+C
2tan−1(y+1x)=ln(x2+y2+2y+1)+C
Similar questions