Math, asked by anjaliimba19, 4 days ago

Can someone solve this for X=?​

Attachments:

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

 \tt{ log_{169}(26) =   \{log_{169}(x)  \} \{ log_{ {x}^{2} }(x)  \}}  \\

 \sf{ \implies log_{169}(26) =   \{log_{169}(x)  \} \{ log_{ {x}^{2} }(x^{2} ) ^{ \frac{1}{2} }  \}}  \\

 \sf{ \implies log_{169}(26) =   \{log_{169}(x)  \}  \bigg\{ \frac{1}{2} \cdot  log_{ {x}^{2} }(x^{2} )  \bigg \}}  \\

 \sf{ \implies2 log_{169}(26) =   \{log_{169}(x)  \}  \{  log_{ {x}^{2} }(x^{2} )  \}}  \\

 \sf{ \implies2 log_{169}(26) =   \{log_{169}(x)  \}  \{ 1 \}}  \\

 \sf{ \implies2 log_{169}(26) =log_{169}(x) } \\

 \sf{ \implies \: log_{169}(26) ^{2}  =log_{169}(x) } \\

 \sf{ \implies \: x  =(26)^{2}  } \\

 \sf{ \implies \: x  =576  } \\

Similar questions