can someone tell me the solution of (b) in the image
Attachments:
![](https://hi-static.z-dn.net/files/dce/2d8ca154cee52e3d453f308b30b4084f.jpg)
Answers
Answered by
2
Since TanA=1/✓3
So A =30
And by Pythagoras thm C=60
(i)1/2*1/2+✓3/2*✓3/2
=1/4+3/4
=4/4
=1
(ii)✓3/2*1/2-1/2*✓3/2
=✓3/4-✓3/4
=0
Sudeepsingh:
thanks
Answered by
1
Trigonometric identities used,
![\bf \: Tan \: \theta \: = \: \frac{Perpendicular}{Base} \\ \\ \bf \: Sin \: \theta \: = \: \frac{Perpendicular}{Hypotenuse} \\ \\ \bf \: Cos \: \theta \: = \: \frac{Base}{Hypotenuse} \\ \bf \: Tan \: \theta \: = \: \frac{Perpendicular}{Base} \\ \\ \bf \: Sin \: \theta \: = \: \frac{Perpendicular}{Hypotenuse} \\ \\ \bf \: Cos \: \theta \: = \: \frac{Base}{Hypotenuse} \\](https://tex.z-dn.net/?f=+%5Cbf+%5C%3A+Tan+%5C%3A+%5Ctheta+%5C%3A+%3D+%5C%3A+%5Cfrac%7BPerpendicular%7D%7BBase%7D+%5C%5C+%5C%5C+%5Cbf+%5C%3A+Sin+%5C%3A+%5Ctheta+%5C%3A+%3D+%5C%3A+%5Cfrac%7BPerpendicular%7D%7BHypotenuse%7D+%5C%5C+%5C%5C+%5Cbf+%5C%3A+Cos+%5C%3A+%5Ctheta+%5C%3A+%3D+%5C%3A+%5Cfrac%7BBase%7D%7BHypotenuse%7D+%5C%5C+)
Given,
A triangle ∆ABC is right angled at B
![Tan \: A \: = \frac{1}{ \sqrt{3} } \\ Tan \: A \: = \frac{1}{ \sqrt{3} } \\](https://tex.z-dn.net/?f=Tan+%5C%3A+A+%5C%3A+%3D+%5Cfrac%7B1%7D%7B+%5Csqrt%7B3%7D+%7D+%5C%5C+)
We know that Tan theta = Perpendicular / Base
So, Perpendicular = 1
Base = √3
We can calculate the value of Hypotenuse by Pythagoras theorem.
![{H}^{2} = {B}^{2} + {P}^{2} \\ \\ {H}^{2} = {(1)}^{2} + {( \sqrt{3} )}^{2} \\ \\ {H}^{2} = 1 + 3 \\ \\ H = \sqrt{4} \\ \\ H = 2cm {H}^{2} = {B}^{2} + {P}^{2} \\ \\ {H}^{2} = {(1)}^{2} + {( \sqrt{3} )}^{2} \\ \\ {H}^{2} = 1 + 3 \\ \\ H = \sqrt{4} \\ \\ H = 2cm](https://tex.z-dn.net/?f=+%7BH%7D%5E%7B2%7D+%3D+%7BB%7D%5E%7B2%7D+%2B+%7BP%7D%5E%7B2%7D+%5C%5C+%5C%5C+%7BH%7D%5E%7B2%7D+%3D+%7B%281%29%7D%5E%7B2%7D+%2B+%7B%28+%5Csqrt%7B3%7D+%29%7D%5E%7B2%7D+%5C%5C+%5C%5C+%7BH%7D%5E%7B2%7D+%3D+1+%2B+3+%5C%5C+%5C%5C+H+%3D+%5Csqrt%7B4%7D+%5C%5C+%5C%5C+H+%3D+2cm)
![\bf \: (i) \: Sin \: A \: Cos \: C \: + \: Cos \: A \: Sin \: C \\ \\ = \frac{1}{2} \times \frac{1}{2} + \frac{ \sqrt{3} }{2} \times \frac{ \sqrt{3} }{2} \\ \\ = \frac{1}{4} + \frac{3}{4} \\ \\ = \frac{1 + 3}{4} \\ \\ = \frac{4}{4} \\ \\ = 1 \bf \: (i) \: Sin \: A \: Cos \: C \: + \: Cos \: A \: Sin \: C \\ \\ = \frac{1}{2} \times \frac{1}{2} + \frac{ \sqrt{3} }{2} \times \frac{ \sqrt{3} }{2} \\ \\ = \frac{1}{4} + \frac{3}{4} \\ \\ = \frac{1 + 3}{4} \\ \\ = \frac{4}{4} \\ \\ = 1](https://tex.z-dn.net/?f=+%5Cbf+%5C%3A+%28i%29+%5C%3A+Sin+%5C%3A+A+%5C%3A+Cos+%5C%3A+C+%5C%3A+%2B+%5C%3A+Cos+%5C%3A+A+%5C%3A+Sin+%5C%3A+C+%5C%5C+%5C%5C+%3D+%5Cfrac%7B1%7D%7B2%7D+%5Ctimes+%5Cfrac%7B1%7D%7B2%7D+%2B+%5Cfrac%7B+%5Csqrt%7B3%7D+%7D%7B2%7D+%5Ctimes+%5Cfrac%7B+%5Csqrt%7B3%7D+%7D%7B2%7D+%5C%5C+%5C%5C+%3D+%5Cfrac%7B1%7D%7B4%7D+%2B+%5Cfrac%7B3%7D%7B4%7D+%5C%5C+%5C%5C+%3D+%5Cfrac%7B1+%2B+3%7D%7B4%7D+%5C%5C+%5C%5C+%3D+%5Cfrac%7B4%7D%7B4%7D+%5C%5C+%5C%5C+%3D+1)
![\bf \: (ii) \: Cos \: A \: Cos \: C \: - \: Sin\: A \: Sin \: C \\ \\ = \frac{ \sqrt{3} }{2} \times \frac{1}{2} - \frac{1}{2} \times \frac{ \sqrt{3} }{2} \\ \\ = \frac{ \sqrt{3} }{4} - \frac{ \sqrt{3} }{4} \\ \\ = 0 \bf \: (ii) \: Cos \: A \: Cos \: C \: - \: Sin\: A \: Sin \: C \\ \\ = \frac{ \sqrt{3} }{2} \times \frac{1}{2} - \frac{1}{2} \times \frac{ \sqrt{3} }{2} \\ \\ = \frac{ \sqrt{3} }{4} - \frac{ \sqrt{3} }{4} \\ \\ = 0](https://tex.z-dn.net/?f=+%5Cbf+%5C%3A+%28ii%29+%5C%3A+Cos+%5C%3A+A+%5C%3A+Cos+%5C%3A+C+%5C%3A+-+%5C%3A+Sin%5C%3A+A+%5C%3A+Sin+%5C%3A+C+%5C%5C+%5C%5C+%3D+%5Cfrac%7B+%5Csqrt%7B3%7D+%7D%7B2%7D+%5Ctimes+%5Cfrac%7B1%7D%7B2%7D+-+%5Cfrac%7B1%7D%7B2%7D+%5Ctimes+%5Cfrac%7B+%5Csqrt%7B3%7D+%7D%7B2%7D+%5C%5C+%5C%5C+%3D+%5Cfrac%7B+%5Csqrt%7B3%7D+%7D%7B4%7D+-+%5Cfrac%7B+%5Csqrt%7B3%7D+%7D%7B4%7D+%5C%5C+%5C%5C+%3D+0)
If any doubt, please ask ;)
Given,
A triangle ∆ABC is right angled at B
We know that Tan theta = Perpendicular / Base
So, Perpendicular = 1
Base = √3
We can calculate the value of Hypotenuse by Pythagoras theorem.
If any doubt, please ask ;)
Attachments:
![](https://hi-static.z-dn.net/files/d77/b02795798effd78cf59f0e9b4bb41bd2.jpg)
Similar questions
Math,
8 months ago
English,
8 months ago
Math,
1 year ago
Chemistry,
1 year ago
Social Sciences,
1 year ago