Math, asked by brawlgameryt674, 9 hours ago

can someone tell the solution​

Attachments:

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Amount to be deposited per month, P = ₹ x + 240

Rate of interest, r = 100/x % per annum

Time period = x/12 years = x/12 × 12 = x months

Number of instâllments, n = x

Maturity value, MV = ₹ 6312

We know,

Maturity Value (MV) received on maturity on investment of ₹ P per month at the rate of r % per annum for n months is given by

\bold{ \red {\boxed{\text{MV} = \text{nP} + \text{P} \times \dfrac{ \text{n(n + 1)}}{24} \times \dfrac{ \text{r}}{100} }}}

So, on substituting the values of MV, n, r, P, we get

\rm \: 6312 = x(x + 240) + (x + 240) \times \dfrac{x(x + 1)}{24} \times \dfrac{100}{x} \times 100

\rm \: 6312 = x(x + 240) + (x + 240) \times \dfrac{(x + 1)}{24}

\rm \: 6312 = x(x + 240) +  \dfrac{(x + 240)(x + 1)}{24}

\rm \: 6312 = (x + 240)\bigg(x + \dfrac{x + 1}{24}\bigg)

\rm \: 6312 = (x + 240)\bigg( \dfrac{24x + x + 1}{24}\bigg)

\rm \: 6312 = (x + 240)\bigg( \dfrac{25x+ 1}{24}\bigg)

\rm \: 25 {x}^{2} + 6000x + x + 240 = 151488

\rm \: 25 {x}^{2} + 6001x+ 240 - 151488 = 0

\rm \: 25 {x}^{2} + 6001x - 151248 = 0

Now, its a quadratic equation and to get the values of x, we use Quadratic Formula.

So, using Quadratic formula, we have

\rm \: x = \dfrac{ - 6001 \:  \pm \:  \sqrt{ {(6001)}^{2}  - 4 \times 25 \times ( - 151248)} }{2 \times 25}

\rm \: x = \dfrac{ - 6001 \:  \pm \:  \sqrt{36012001 + 15124800} }{50}

\rm \: x = \dfrac{ - 6001 \:  \pm \:  \sqrt{51136801} }{50}

\rm \: x = \dfrac{ - 6001 \:  \pm \:  7151 }{50}

\rm \: x = \dfrac{ - 6001 \:   +  \:  7151 }{50}  \:  \:  \:  \:  \:  \:  \{as \: x \:  \cancel{ < } \: 0 \}

\rm \: x = \dfrac{ 1150 }{50}

\bf\implies \:x = 23 \:

So, Maturity period of RD is 23 months or 1 year 11 months

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

Interest (I) received on maturity on investment of ₹ P per month at the rate of r % per annum for n months is given by

\bold{ \red{\boxed{\text{I} = \text{P} \times \dfrac{ \text{n(n + 1)}}{24} \times \dfrac{ \text{r}}{100} }}}

Similar questions