Can someone workout this sum?
Answers
Question:
Find the value of a, b and c such that a, 7, b, 23 and c are in AP.
Answer:
The required values are a = - 1, b = 15, c = 31.
Step-by-step-explanation:
We have given that,
a, 7, b, 23 and c are in AP.
We know that,
In an AP, the difference between two consecutive terms is constant.
Here,
- t₁ = a
- t₂ = 7
∴ t₂ - t₁ = 7 - a - - - ( 1 )
Now,
t₃ - t₂ = b - 7 - - - ( 2 )
And,
t₄ - t₃ = 23 - b - - - ( 3 )
As the terms are in AP,
∴ t₃ - t₂ = t₄ - t₃
⇒ b - 7 = 23 - b - - - [ From ( 2 ) & ( 3 ) ]
⇒ b + b = 23 + 7
⇒ 2b = 30
⇒ b = 30 / 2
⇒ b = 15
Now,
t₃ - t₂ = t₂ - t₁
⇒ b - 7 = 7 - a - - - [ From ( 1 ) & ( 2 ) ]
⇒ 15 - 7 = 7 - a
⇒ 8 = 7 - a
⇒ 8 - 7 = - a
⇒ 1 = - a
⇒ a = - 1
Now,
t₅ - t₄ = t₃ - t₂
⇒ c - 23 = b - 7
⇒ c = b - 7 + 23
⇒ c = b + 16
⇒ c = 15 + 16
⇒ c = 31
∴ The required values are a = - 1, b = 15, c = 31.