Math, asked by kripaohri250, 6 days ago

can u explain this q ​

Attachments:

Answers

Answered by pratyakshprakhar
0

Answer:

(i) area of the rectangle = l*b

= 16*12

=192 sq. cm

length of diagonal of the rectangle=root(l^2+b^2)

= root(256+144)

=root(400)

=20 cm

(ii) area of the rectangle=17.28 sq.m

diagonal of the rectangle=6 m

mark me as brainliest

Answered by Anonymous
9

Answer:

SOLUTION :

Find the (a) area (b) length of diagonal of a rectangle whose :

(i) length = 16 cm and breadth = 12 cm

Finding the area of rectangle by substituting the values in the formula :-

{\longrightarrow{\sf{Area_{(Rectangle)} = Length \times Breadth}}}

{\longrightarrow{\sf{Area_{(Rectangle)} = 16 \times 12}}}

{\longrightarrow{\sf{\underline{\underline{\red{Area_{(Rectangle)} = 192 \:  {cm}^{2}}}}}}}

Hence, the area of rectangle is 192 cm².

Finding the diagonal of rectangle by substituting the values in the formula :-

{\longrightarrow{\sf{Diagonal_{(Rectangle)} =  \sqrt{{(Length)}^{2} + {(Breadth)}^{2}}}}}

{\longrightarrow{\sf{Diagonal_{(Rectangle)} =  \sqrt{{(16)}^{2} + {(12)}^{2}}}}}

{\longrightarrow{\sf{Diagonal_{(Rectangle)} =  \sqrt{{(16 \times 16)} + {(12 \times 12)}}}}}

{\longrightarrow{\sf{Diagonal_{(Rectangle)} = \sqrt{(256) + (144)}}}}

{\longrightarrow{\sf{Diagonal_{(Rectangle)} = \sqrt{256 + 144} }}}

{\longrightarrow{\sf{Diagonal_{(Rectangle)} = \sqrt{400 \:  {cm}^{2}}}}}

{\longrightarrow{\sf{\underline{\underline{\red{Diagonal_{(Rectangle)} =20 \: cm}}}}}}

Hence, the diagonal of rectangle is 20 cm.

━━━━━━━━━

(ii) length = 4.8 m and breadth = 3.6 m

Finding the area of rectangle by substituting the values in the formula :-

{\longrightarrow{\sf{Area_{(Rectangle)} = Length \times Breadth}}}

{\longrightarrow{\sf{Area_{(Rectangle)} =4.8 \times 3.6}}}

{\longrightarrow{\sf{\underline{\underline{\red{Area_{(Rectangle)} =17.28 \:  {m}^{2}}}}}}}

Hence, the area of rectangle is 17.28 m².

Finding the diagonal of rectangle by substituting the values in the formula :-

{\longrightarrow{\sf{Diagonal_{(Rectangle)} =  \sqrt{{(Length)}^{2} + {(Breadth)}^{2}}}}}

{\longrightarrow{\sf{Diagonal_{(Rectangle)} =  \sqrt{{(4.8)}^{2} + {(3.6)}^{2}}}}}

{\longrightarrow{\sf{Diagonal_{(Rectangle)} =  \sqrt{{(4.8 \times 4.8)}+ {(3.6 \times 3.6)}}}}}

{\longrightarrow{\sf{Diagonal_{(Rectangle)} =  \sqrt{{(23.04)}+ {(12.96)}}}}}

{\longrightarrow{\sf{Diagonal_{(Rectangle)} =  \sqrt{23.04 + 12.96}}}}

{\longrightarrow{\sf{Diagonal_{(Rectangle)} =  \sqrt{36 \:  {m}^{2} }}}}

{\longrightarrow{\sf{\underline{\underline{\red{Diagonal_{(Rectangle)} = 6 \: m}}}}}}

Hence, the diognal of rectangle is 6 m.

━━━━━━

Learn More :

\begin{gathered}\boxed{\begin {minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {minipage}}\end{gathered}

\rule{220pt}{3pt}

Similar questions