Math, asked by GUNAVATHIMI, 2 months ago

Can u find the mean by assumed mean method? ​

Attachments:

Answers

Answered by MysticSohamS
2

Answer:

hey here is your answer in above pics

pls mark it as brainliest answer pls

Attachments:
Answered by Anonymous
8

Question:

Find the mean of the data using Assumed mean method.

\begin{array}{| c  ||c|} \bf \: class - interval& \bf frequency \\ 10 - 15 &7\\ 15 - 20&9 \\ 20 - 25&6 \\ 25 - 30 &5\\ 30 - 35 &3\end{array}

Solution:

We have our formula for Assumed mean method i.e

\boxed {Mean = a+ \frac{\sum f_id_i}{\sum f_i}}

 f_i = \sf  frequency~of~the~interval \\\\ a= \sf  assumed ~mean \\\\ d_i = \sf  deviation (x_i - a)

Make a table:

 \begin{array}{|c||c||c||c||c|} \bf \:  \underline{class - interval}& \bf \underline{ frequency (f_i)}&  \bf  \underline{class \: mark(x_i)} &  \bf  \underline{d_i=(x_i - a)} & \bf \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  f_id_i   \:  \: \:  \:  \:  \:  \:  \: }\\ 10 - 15 &7&12.5& - 10& - 70\\ 15 - 20&9&17.5& - 5 & - 45\\ 20 - 25&6&22.5( a)&0&0 \\ 25 - 30 &5&27.5&5&25\\ 30 - 35 &3&32.5&10&30 \\  &   \overline{\sum f_i = 30}& & & \overline{ \sum f_id_i =  - 60}\end{array}

Put the values in formula:

 Mean = a+ \frac{\sum f_id_i}{\sum f_i} \\\\ Mean= 22.5 + \frac{-60}{30} \\\\ Mean= 22.5+ (-2) \\\\ \bf Mean= 20.5

Similar questions