Math, asked by hoppywerside, 11 months ago

Can u help please ...............

Attachments:

Answers

Answered by TrickYwriTer
27

Step-by-step explanation:

Given -

  • A, B, C and D lies on a circle, Centre O, radius 8 cm.
  • AB and CD are tangents to a circle, centre O, radius 4 cm
  • ABCD is a rectangle

To Find -

  • Distance AE
  • Area of the shaded region

As we know that :-

(Hypotenuse)² = (Perpendicular)² + (Base)²

from Pythagoras Theorem

Now,

In ΔOAE,

» (OA)² = (OE)² + (AE)²

» (AE)² = (8)² - (4)²

» (AE)² = 64 - 16

» (AE)² = 48

» AE = √48

  • » AE = 43 cm

Now,

AD = 2OE

AD = 2×4

  • » AD = 8 cm

And

AB = 2AE

AB = 2×4√3

  • » AB = 83 cm

Now,

Area of rectangle ABCD = l × b

here,

l = length

b = breadth

» 8√3 × 8

» 64√3

substituting √3 = 1.73

» 64 × 1.73

  • » 110.72 cm²

And

Area of Circle = πr²

here,

r = radius of the circle

» π(4

» 16π

Substituting π = 3.14

» 16 × 3.14

  • » 50.24 cm²

Now,

  • Area of shaded region = Area of rectangle ABCD - Area of circle

» 110.72 - 50.24

  • » 60.48 cm²

Hence,

The Distance AE is 83 cm

And

Area of shaded region is 60.48 cm²

Note :-

Figure in the attachment

(NOT TO SCALE)

Attachments:
Answered by silentlover45
0

  \huge \mathfrak{Answer:-}

\large\underline\mathrm{The \: distance \: AE \: is \: 8√3cm.}

\large\underline\mathrm{Area \: of \: shaded \: region \: is \: 60.48cm².}

\large\underline\mathrm{Given:-}

  • A, B, C and D lies on a circle, centre O, radius 8cm.
  • AB and CD are tangent to a circle O, radius 4cm.
  • ABCD is a rectangle.

\large\underline\mathrm{To \: find}

  • Distance AE
  • Area of the shaded region.

\large\underline\mathrm{Using}: formula:-}

  • H² = P² + B²

\large\underline\mathrm{Solution}

  • ∆OAE

\implies OA² = OE² + AE²

\implies AE² = 8² - 4²

\implies AE² = 64 - 16

\implies AE² = 48

\implies AE = √48

\implies AE = 4√3cm

\large\underline\mathrm{Now,}

\implies AD = 2OE

\implies AD = 2 × 4

\implies AD = 8cm

\large\underline\mathrm{And}

\implies AB = 2AE

\implies AB = 2 × 4√3

\implies AB = 8√3cm

\large\underline\mathrm{Now,}

\large\underline\mathrm{Area \: of \: rectangle \: ABCD \: = \: l \: × \: b}

\implies 8√3 × 8

\implies 64√3

\large\underline\mathrm{So, \: √3 \: = \: 1.73cm²}

\implies 64 × 1.73

\implies 110.72cm²

\large\underline\mathrm{And,}

\large\underline\mathrm{Area \: of \: circle \: = \: πr²}

\implies π4²

\implies 16π

\large\underline\mathrm{So, \: π \: = \: 3.14}

\implies 16 × 3.14

\implies 50.24cm²

\large\underline\mathrm{Thus,}

\large\underline\mathrm{Area \: of \: shaded \: region \: = \: Area \: of \: rectangle \: ABCD \: - \: Area \: of \: circle.}

\implies 110.72 - 50.24

\implies 60.48cm²

\large\underline\mathrm{Hence,}

\large\underline\mathrm{The \: distance \: AE \: is \: 8√3cm.}

\large\underline\mathrm{And,}

\large\underline\mathrm{Area \: of \: shaded \: region \: is \: 60.48cm².}

\large\underline\mathrm{Hope \: it \: helps \: you \: plz \: mark \: me \: brainlist}

Similar questions