Math, asked by LazAzyan, 5 hours ago

can u please answer this

Attachments:

Answers

Answered by BlessedOne
30

Question 1 :

  • Simplify \sf\:a(a^{2}-a+1)+5a and find it's value for a = -2

Solution :

\sf\:a(a^{2}-a+1)+5a

Plugging the value of a as (-2) -

\sf\dashrightarrow\:(-2)[(-2)^{2}-(-2)+1]+5(-2)

\sf\dashrightarrow\:(-2)[4+2+1]+(-10)

\sf\dashrightarrow\:(-2)[6+1]-10

\sf\dashrightarrow\:(-2)[7]-10

\sf\dashrightarrow\:(-2) \times 7-10

\sf\dashrightarrow\:-14-10

\small{\underline{\boxed{\mathrm\purple{\dashrightarrow(-24)}}}}

════════════════════

Question 2 :

  • Evaluate using suitable identity : 101 × 103

Solution :

\sf\:101 \times 103

  • 101 can be written as ( 100+1 )

  • 103 can be written as ( 100+3 )

\sf\leadsto\:(100+1) \times (100+3)

Using an identity :

  • \tt\:(x+a)(x+b) = x^{2}+(a+b) x+ab

Here :

  • x = 100 , a = 1 and b = 3

\sf\leadsto\:(100)^{2}+(1+3)100+1 \times 3

\sf\leadsto\:10000+4 \times 100+1 \times 3

\sf\leadsto\:10000+400+3

\sf\leadsto\:10400+3

\small{\underline{\boxed{\mathrm\purple{\leadsto\:10403}}}}

════════════════════

Question 3 :

  • If p + q = 12 and pq = 22 , then find \sf\:p^{2}+q^{2}

Solution :

We know that -

  • \sf\:(a+b) ^{2}=a^{2}+2ab+b^{2}

Using this identity in this question -

\sf\twoheadrightarrow\:(p+q) ^{2}=p^{2}+2pq+q^{2}

Substituting :

  • p + q = 12 and pq = 22

\sf\twoheadrightarrow\:(12) ^{2}=p^{2}+2 \times 22+q^{2}

\sf\twoheadrightarrow\:144=p^{2}+44+q^{2}

Transposing +44 to LHS it becomes -44

\sf\twoheadrightarrow\:144-44=p^{2}+q^{2}

\sf\twoheadrightarrow\:100=p^{2}+q^{2}

\small{\underline{\boxed{\mathrm\purple{\twoheadrightarrow\:oR~p^{2}+q^{2}=100}}}}

════════════════════

Therefore , the final answer :

\sf\color{cyan}{⋆} Question 1 answer = \bf\color{black}{\:(-24)}

\sf\color{cyan}{⋆} Question 2 answer = \bf\color{black}{\:10403}

\sf\color{cyan}{⋆} Question 3 answer => \bf\color{black}{\:p^{2}+q^{2}=100}

Similar questions