Math, asked by monjyotiboro, 3 months ago

Can u please help me in calculating this..


Note : it's multiplication


The answer should be a^2 ...



!!!!!what a shame i couldn't do! ☹️☹️

idk how my teacher solved it​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\dfrac{a(\sqrt{ {b}^{2}  -  {a}^{2} })cos \theta \:  - ab }{ \sqrt{ {a}^{2} {cos}^{2} \theta + {b}^{2} {sin}^{2}\theta}} \times \dfrac{ - a(\sqrt{ {b}^{2}  -  {a}^{2} })cos \theta \:  - ab }{ \sqrt{ {a}^{2} {cos}^{2} \theta + {b}^{2} {sin}^{2}\theta}}

\rm = \:\dfrac{a(\sqrt{ {b}^{2}  -  {a}^{2} })cos \theta \:  - ab }{ \sqrt{ {a}^{2} {cos}^{2} \theta + {b}^{2} {sin}^{2}\theta}} \times \dfrac{ -  \bigg(a(\sqrt{ {b}^{2}  -  {a}^{2} })cos \theta + ab  \bigg)}{ \sqrt{ {a}^{2} {cos}^{2} \theta + {b}^{2} {sin}^{2}\theta}}

\rm = \:\dfrac{ab - a(\sqrt{ {b}^{2}  -  {a}^{2} })cos \theta}{ \sqrt{ {a}^{2} {cos}^{2} \theta + {b}^{2} {sin}^{2}\theta}} \times \dfrac{\bigg(a(\sqrt{ {b}^{2}  -  {a}^{2} })cos \theta + ab  \bigg)}{ \sqrt{ {a}^{2} {cos}^{2} \theta + {b}^{2} {sin}^{2}\theta}}

\rm = \:\dfrac{ab - a(\sqrt{ {b}^{2}  -  {a}^{2} })cos \theta}{ \sqrt{ {a}^{2} {cos}^{2} \theta + {b}^{2} {sin}^{2}\theta}} \times \dfrac{ab + a(\sqrt{ {b}^{2}  -  {a}^{2} })cos \theta}{ \sqrt{ {a}^{2} {cos}^{2} \theta + {b}^{2} {sin}^{2}\theta}}

We know,

 \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{\:(x + y)(x - y) =  {x}^{2} -  {y}^{2}\bigg \}}

So, using this identity, we get

\rm \:  =  \:  \: \dfrac{ {(ab)}^{2} -  \bigg( a(\sqrt{ {b}^{2}  -  {a}^{2} })cos \theta \bigg)^{2} }{{a}^{2} {cos}^{2} \theta + {b}^{2} {sin}^{2}\theta}

\rm \:  =  \:  \: \dfrac{  {a}^{2} {b}^{2} -   {a}^{2} ( {b}^{2}  -  {a}^{2})cos^{2} \theta}{{a}^{2} {cos}^{2} \theta + {b}^{2} {sin}^{2}\theta}

\rm \:  =  \:  \: \dfrac{  {a}^{2} ({b}^{2} -   ( {b}^{2}  -  {a}^{2})cos^{2} \theta)}{{a}^{2} {cos}^{2} \theta + {b}^{2} {sin}^{2}\theta}

\rm \:  =  \:  \: \dfrac{  {a}^{2} ({b}^{2} -   {b}^{2} {cos}^{2}\theta + {a}^{2}cos^{2} \theta)}{{a}^{2} {cos}^{2} \theta + {b}^{2} {sin}^{2}\theta}

\rm \:  =  \:  \: \dfrac{{a}^{2}  \bigg({b}^{2}(1 -{cos}^{2}\theta) + {a}^{2}cos^{2} \theta \bigg)}{{a}^{2} {cos}^{2} \theta + {b}^{2} {sin}^{2}\theta}

\rm \:  =  \:  \: \dfrac{{a}^{2}  \bigg({b}^{2}{sin}^{2}\theta+ {a}^{2}cos^{2} \theta \bigg)}{{a}^{2} {cos}^{2} \theta + {b}^{2} {sin}^{2}\theta}

\rm \:  =  \:  \:  {a}^{2}

Hence, Proved

More Identities to know:

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions