Math, asked by rajeshtmberco, 9 months ago

can u please solve it and explain step by step. need to prove​

Attachments:

Answers

Answered by Anonymous
3

Question:-

 \rm \:  prove \:  \:  \: \cot {}^{2}  x  -  \frac{1}{ \sin {}^{2}  x}  + 1 = 0

Solution:-

\rm \:   \:  \:  \: \cot {}^{2}  x  -  \frac{1}{ \sin {}^{2}  x}  + 1 = 0

We can write

\rm \:   \:  \:  \: \cot {}^{2}   x   + 1-  \frac{1}{ \sin {}^{2}  x}  = 0

Using this trigonometry identities

 \to \rm \: 1 +  \cot {}^{2} ( \theta)  =  \csc {}^{2} ( \theta)

 \to \rm \:  \csc( \theta)  =  \frac{1}{ \sin( \theta) }

Applying this identity, we get

\rm \:   \:  \:  \:  \csc {}^{2}   x  -  \frac{1}{ \sin {}^{2}  x}  = 0

\rm \:   \:  \:  \:     \frac{1}{ \sin {}^{2} x}  -  \frac{1}{ \sin {}^{2}  x}  = 0

 \rm \: 0 = 0

Hence proved

some Trigonometry identity

  \to\rm \:  \sin {}^{2} (x)  +  \cos {}^{2} (x)  = 1

 \rm \:  \to \: 1 +  \cot {}^{2} (x)  =  \csc {}^{2} (x)

 \rm \to \: 1 +  \tan{}^{2} (x)  =  \sec {}^{2} (x)

 \to \rm \:  \tan(x)  =  \frac{ \sin(x) }{ \cos(x) }

 \rm \:  \to \:  \cot(x)  =  \frac{ \cos(x) }{ \sin(x) }

 \rm \:  \to \csc(x)  =  \frac{1}{ \sin( x{}^{} ) }

 \rm \:  \to \sec(x)  =  \frac{1}{ \cos(x) }

Similar questions