can u pls do it,.....fast
Answers
Question 12 :
Solution :-
• Given : x = 3 - 2√2
• To find : i. 1/x
ii. x + 1/x
iii. x² + 1/x²
i. We have x = 3 - 2√2
=> 1/x = 1/(3 - 2√2)
=> 1/x = (3 + 2√2) / (3 - 2√2)•(3 + 2√2)
=> 1/x = (3 + 2√2) / [ 3² - (2√2)² ]
=> 1/x = (3 + 2√2) / (9 - 8)
=> 1/x = (3 + 2√2) / 1
=> 1/x = 3 + 2√2
ii. We have x = 3 - 2√2 and 1/x = 3 + 2√2
=> x + 1/x = 3 - 2√2 + 3 + 2√2
=> x + 1/x = 6
iii. We have x + 1/x = 6
=> (x + 1/x)² = 6² {on squaring both sides}
=> x² + 2•x•(1/x) + (1/x)² = 36
=> x² + 2 + 1/x² = 36
=> x² + 1/x² = 36 - 2
=> x² + 1/x² = 34
××××××××××××××××××××××××××××××××××××
Question 13 :
Solution :-
We need to find the value of ;
2/(√5 + √3) + 1/(√3 + √2) - 3/(√5 + √2)
Now ,
• 2/(√5 + √3)
= 2(√5 - √3) / (√5 + √3)•(√5 - √3)
= 2(√5 - √3) / [ (√5)² - (√3)² ]
= 2(√5 - √3) / (5 - 3)
= 2(√5 - √3) / 2
= √5 - √3
• 1/(√3 + √2)
= (√3 - √2) / (√3 + √2)•(√3 - √2)
= (√3 - √2) / [ (√3)² - (√2)² ]
= (√3 - √2) / (3 - 2)
= (√3 - √2) / 1
= √3 - √2
• 3/(√5 + √2)
= 3(√5 - √2) / (√5 + √2)•(√5 - √2)
= 3(√5 - √2) / [ (√5)² - (√2)² ]
= 3(√5 - √2) / (5 - 2)
= 3(√5 - √2) / 3
= √5 - √2
Now ,
2/(√5 + √3) + 1/(√3 + √2) - 3/(√5 + √2)
= (√5 - √3) + (√3 - √2) - (√5 - √2)
= √5 - √3 + √3 - √2 - √5 + √2
= 0
Hence ,
2/(√5 +√3) + 1/(√3 +√2) - 3/(√5 +√2) = 0