Math, asked by raamuimages235, 1 year ago

can u pls solve this question : a/(x-b)+b/(x-a)=2

Answers

Answered by saurabhsemalti
2

 \frac{a}{x - b}  +  \frac{b}{x - a}  = 2 \\  \frac{a(x - a) + b(x - b)}{(x - a)(x - b)}  = 2 \\ x(a + b) - ( {a}^{2} +  {b}^{2}  ) = 2( {x}^{2}  - (a + b)x + ab)  \\  2 {x}^{2}  - 2(a + b)x + 2ab - (a + b)x + ( {a}^{2}  +  {b}^{2} ) = 0 \\ 2 {x}^{2}  - 3(a + b)x + (a + b) {}^{2}  = 0 \\
solving the problem by quadratic equation
2 {x}^{2}  - 3(a + b)x + (a + b) {}^{2}  = 0 \\ d =  \sqrt{9(a + b) {}^{2} - 8(a + b) {}^{2}  }  = (a + b) \\ so \\ x =  \frac{3(a + b)( +  - )(a + b)}{4}  \\ x =  \frac{3a + 3b +  a+b }{4}  = a + b \\ and \\ x = (3a + 3b - a - b) \div 4 \\  =  \frac{(a + b)}{2}
there are 2 value of X....
mark as brainliest if helped
Similar questions