Math, asked by guptamahi98300, 9 months ago

Can u send me all formulas of tringinometry..​

Answers

Answered by greatfanofdhoni
4

Answer:

Sin A = Perpendicular/Hypotenuse

Cos A = Base/Hypotenuse

Tan A = Perpendicular/Base

Answered by Anonymous
4

Answer:

Basic formulas

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Step-by-step explanation:

reciprocal

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot

sin(90°−x) = cos x

cos(90°−x) = sin x

tan(90°−x) = cot x

cot(90°−x) = tan x

sec(90°−x) = csc x

csc(90°−x) = sec x

Sum & Difference Identities

sin(x+y) = sin(x)cos(y)+cos(x)sin(y)

cos(x+y) = cos(x)cos(y)–sin(x)sin(y)

tan(x+y) = (tan x + tan y)/ (1−tan x •tan y)

sin(x–y) = sin(x)cos(y)–cos(x)sin(y)

cos(x–y) = cos(x)cos(y) + sin(x)sin(y)

tan(x−y) = (tan x–tan y)/ (1+tan x • tan y)

Double Angle Identities

sin(2x) = 2sin(x) • cos(x) = [2tan x/(1+tan2 x)]

cos(2x) = cos2(x)–sin2(x) = [(1-tan2 x)/(1+tan2 x)]

cos(2x) = 2cos2(x)−1 = 1–2sin2(x)

tan(2x) = [2tan(x)]/ [1−tan2(x)]

sec (2x) = sec2 x/(2-sec2 x)

csc (2x) = (sec x. csc x)/2

Triple Angle Identities

Sin 3x = 3sin x – 4sin3x

Cos 3x = 4cos3x-3cos x

Tan 3x = [3tanx-tan3x]/[1-3tan2x]

Half Angle Identities

sinx2=±1−cosx2−−−−−−√

cosx2=±1+cosx2−−−−−−√

tan(x2)=1−cos(x)1+cos(x)−−−−−−√

Also, tan(x2)=1−cos(x)1+cos(x)−−−−−−√=(1−cos(x))(1−cos(x))(1+cos(x))(1−cos(x))−−−−−−−−−−−−−√=(1−cos(x))21−cos2(x)−−−−−−−−√=(1−cos(x))2sin2(x)−−−−−−−−√=1−cos(x)sin(x) So, tan(x2)=1−cos(x)sin(x)

Product identities

sinx⋅cosy=sin(x+y)+sin(x−y)2

cosx⋅cosy=cos(x+y)+cos(x−y)2

sinx⋅siny=cos(x−y)−cos(x+y)2

Sum to Product Identities

sinx+siny=2sinx+y2cosx−y2

sinx−siny=2cosx+y2sinx−y2

cosx+cosy=2cosx+y2cosx−y2

cosx−cosy=−2sinx+y2sinx−y2

Inverse Trigonometry Formulas

sin-1 (–x) = – sin-1 x

cos-1 (–x) = π – sin-1 x

tan-1 (–x) = – tan-1 x

cosec-1 (–x) = – cosec-1 x

sec-1 (–x) = π – sec-1 x

cot-1 (–x) = π – cot-1 x

Similar questions