Math, asked by Salomirani, 4 months ago

can u solve this integration with steps..​

Attachments:

Answers

Answered by Anonymous
18

Solution

We have

 \sf \implies \int \:  \dfrac{ {e}^{2x} }{ \sqrt[4]{ {e}^{x} - 1 } } dx \\

Now Using Substitution Method

 \sf \implies \: let \:  \:  {e}^{x}  - 1 =  {t}^{4}

 \sf \implies \:  {e}^{x} dx = 4 {t}^{3} dt

we can write as

\sf \implies \int \:  \dfrac{ {e}^{x}  \times  {e}^{x} }{ \sqrt[4]{ {e}^{x} - 1 } } dx \\

 \sf \implies \int \dfrac{e^{x}  \times 4 {t}^{3}dt }{( {t}^{4}) {}^{ \frac{1}{4} }  }  \implies \:\int \dfrac{e^{x}  \times 4 {t}^{3} dt}{{t} }   \\

Now We have to eliminate eˣ We can write

\sf \implies \:  \:  {e}^{x}  - 1 =  {t}^{4}

 \sf \implies \ {e}^{x}  =  {t}^{4}  + 1

Put the value

 \sf \implies4\int \dfrac{( {t}^{4}   + 1) \times {t}^{3} dt}{{t} }   \\

 \sf \implies \: 4 \int( {t}^{4}  + 1) \times  {t}^{2} dt \\

 \sf \implies \: 4 \int( {t}^{6}  +  {t}^{2} )dt \\

 \sf \implies \: 4 \bigg  \{\dfrac{ {t}^{6 + 1} }{6 + 1}   +  \dfrac{t {}^{2 + 1} }{2 + 1}  \bigg \} + c

 \sf \implies \: 4 \bigg(  \dfrac{ {t}^{7} }{7}  +  \dfrac{ {t}^{3} }{3}  \bigg) + c

 \sf \implies \:4 \bigg(  \dfrac{3 {t}^{7}  + 7 {t}^{3} }{21}  \bigg) + c

 \sf \implies \:  4 {t}^{3}  \bigg( \dfrac{3t {}^{4} + 7 }{21}  \bigg) + c

Now put the value

 \sf \implies \:  \:  \:  {e}^{x}  - 1 =  {t}^{4}

 \sf \implies \: 4( {e}^{x}  - 1) {}^{ \frac{3}{4} }  \bigg( \dfrac{3( {e}^{x} - 1) + 7 }{21}  \bigg) + c

 \sf \implies \: 4( {e}^{x}  - 1)^{ \frac{3}{4} }  \bigg( \dfrac{3 {e}^{x} - 3 + 7 }{21}  \bigg) + c

 \sf \implies \: 4( {e}^{x}  - 1)^{ \frac{3}{4} }  \bigg( \dfrac{3 {e}^{x}  + 4}{21}  \bigg) + c

 \sf \implies \:  \dfrac{4}{21} ( {e}^{x}  - 1) ^{ \frac{3}{4} } (3 {e}^{x}  + 4) + c

Answer

\sf \implies \:  \dfrac{4}{21} ( {e}^{x}  - 1) ^{ \frac{3}{4} } (3 {e}^{x}  + 4) + c

Option A is correct

Similar questions