Math, asked by SANJAILION, 1 year ago

can u tell answers for which questions did u know

Attachments:

Answers

Answered by praneethks
1

Step-by-step explanation:

5.

 \frac{1}{1 +  \sqrt{2}} +  \frac{1}{ \sqrt{2} +  \sqrt{3}} =  >  \frac{( \sqrt{2} - 1) }{( \sqrt{2} + 1)( \sqrt{2} - 1)} +

 \frac{( \sqrt{3}  -   \sqrt{2}) }{( \sqrt{3} + \sqrt{2})(  \sqrt{3} -  \sqrt{2})} =  >  \sqrt{2} - 1 +  \sqrt{3} -

 \sqrt{2} =  >  - 1 +  \sqrt{3}

4. a =>(3+√5)/2 and 1/a =>2/(3+√5)=>

2(3-√5)/(3+√5)(3-√5) =>(3-√5)2/4 =>(3-√5)/2

a+ 1/a => (3+√5)/2 +(3-√5)/2 =>3.

 {(a +  \frac{1}{a})}^{2} =  {a}^{2} +  \frac{1}{ {a}^{2}} + 2 =  > 9  - 2 =

 {a}^{2} +  \frac{1}{ {a}^{2}} =  >  {a}^{2} +  \frac{1}{ {a}^{2} } = 7

3.

 \sqrt[4]{81} \div 8 \sqrt[3]{216} +  15 \sqrt[5]{32} +  \sqrt{225}

Apply BODMAS rule

3 \div 48 + 15 \times 2  +  15 =  >  \frac{1}{16} + 45  = >

45.0625.

6. (i) x +1/x = 11 =>on squaring on both sides

 {(x +  \frac{1}{x}) }^{2} =  {x}^{2} +  \frac{1}{ {x}^{2}}+ 2.x. \frac{1}{x} = 121

 =  >  {x}^{2} +  \frac{1}{ {x}^{2}} = 121 - 2  = 119

(ii)

 {x}^{2} +  \frac{1}{ {x}^{2}} = 4 =  >

On squaring on both sides, we get

 {( {x}^{2} +  \frac{1}{ {x}^{2} }) }^{2} = 16 =  >  {x}^{4} +  \frac{1}{ {x}^{4}} + 2 =

16 =  >  {x}^{4} +  \frac{1}{ {x}^{4}} = 16 - 2 = 14

7. 3x+2y=20...(1) and 9x-y=11...(2) Multiply (1) by 2 and add to (2) => 3x+2y+2(9x-y)=20+

22 =>21x=42=>x=42/21=2. Substitute x=2 in the equation (1) =>3(2)+2y=20=>2y=20-6=14 =>y =14/2=7. We need to calculate the value of

27 {x}^{3} + 8 {y}^{3} =  > 27 {(2)}^{3} + 8 {(7)}^{3}  =  >

216 + 2744 =  > 2960

Hope it helps you.

Similar questions