Hindi, asked by joshipratyaksh08, 1 month ago

Can we find a unified theory of physics? .​

Answers

Answered by ItzMissHeartHacker
1

Answer:

Solution :-

We Know,

\text m_ \alpha = 4\text{amu}m

α

=4amu

\text m_\text p = 1\text{amu}m

p

=1amu

❒ Calculating Kinetic Energies :

⏩ For α - particle :

\begin{gathered}\text{K.E}_\alpha = \frac{1}{2} \text m_ \alpha\text v_ \alpha {}^{2} \\ \end{gathered}

K.E

α

=

2

1

m

α

v

α

2

\begin{gathered}\text{K.E}_\alpha = \frac{1}{2} \times 4\times \text v_ \alpha {}^{2} \\ \end{gathered}

K.E

α

=

2

1

×4×v

α

2

\begin{gathered} \large\green{ \pmb{\bf{K.E}_\alpha = 2 v_ \alpha {}^{2}}} \\ \end{gathered}

K.E

α

=2v

α

2

K.E

α

=2v

α

2

⏩ For proton :

\begin{gathered}\text{K.E}_\text p = \frac{1}{2} \text m_ \text p\text v_ \text p {}^{2} \\ \end{gathered}

K.E

p

=

2

1

m

p

v

p

2

\begin{gathered}\text{K.E}_\text p = \frac{1}{2} \times 1\times \text v_ \text p {}^{2} \\ \end{gathered}

K.E

p

=

2

1

×1×v

p

2

\begin{gathered} \large\green{ \pmb{\bf{K.E}_\text p = \dfrac{1}{2} v_ \text p {}^{2}}} \\ \end{gathered}

K.E

p

=

2

1

v

p

2

K.E

p

=

2

1

v

p

2

As Given in Question kinetic energy is same of both α - particle and proton :

\begin{gathered} \dfrac{\text K.\text E_ \alpha }{\text K.\text E_\text p} = 1 \\ \end{gathered}

K.E

p

K.E

α

=1

\begin{gathered}:\longmapsto \frac{2 \times {\text v_ \alpha }^{2} }{ \frac{1}{2} \times\text v_\text p {}^{2} } = 1 \\ \end{gathered}

:⟼

2

1

×v

p

2

2×v

α

2

=1

\begin{gathered}:\longmapsto \text v_\text p {}^{2} = 4 \text v_ \alpha {}^{2} \\ \end{gathered}

:⟼v

p

2

=4v

α

2

\purple{ \Large :\longmapsto \underline {\boxed{{\pmb{\bf v_p = 2v_\alpha}} }}}:⟼

v

p

=2v

α

v

p

=2v

α

❒ We Have 3rd Equation of Motion as :

\pink{ \bigstar \: \: } \large \bf \orange{ \underbrace{ \underline{ {v}^{2} - {u}^{2} = 2as }}}★

v

2

−u

2

=2as

⏩ Applying 3rd Equation For α - particle

\begin{gathered}:\longmapsto\text v_ \alpha {}^{2} - \text u_ \alpha {}^{2} = 2\text a\text s_ \alpha \\ \end{gathered}

:⟼v

α

2

−u

α

2

=2as

α

As Initial Velocity is 0

\begin{gathered}:\longmapsto\text v_ \alpha {}^{2} - 0 = 2\text a\text s_ \alpha \\ \end{gathered}

:⟼v

α

2

−0=2as

α

\red{\large \pmb{ \bf 2as_ \alpha = v_ \alpha {}^{2} }} \: - - - (1)

2as

α

=v

α

2

2as

α

=v

α

2

−−−(1)

⏩ Applying 3rd Equation For proton :

\begin{gathered}:\longmapsto\text v_ \p {}^{2} - \text u_ \p {}^{2} = 2\text a\text s_ \p \\ \end{gathered}

:⟼v

\p

2

−u

\p

2

=2as

\p

As Initial Velocity is 0

\begin{gathered}:\longmapsto\text v_ \p {}^{2} - 0 = 2\text a\text s_ \p \\ \end{gathered}

:⟼v

\p

2

−0=2as

\p

\red{\large{ \bf 2as_ \p = v_ \p {}^{2} }} \: - - - (2)2as

\p

=v

\p

2

−−−(2)

⏩ Dividing (2) by (1) :

\begin{gathered}\pmb{\bf\dfrac{s_{\alpha}}{s_p} = \frac{ {v_ \alpha }^{2} }{v_p {}^{2} } } \\ \end{gathered}

s

p

s

α

=

v

p

2

v

α

2

s

p

s

α

=

v

p

2

v

α

2

Putting \pmb{\bf v_p = 2v_\alpha}

v

p

=2v

α

v

p

=2v

α

\begin{gathered}:\longmapsto \sf\dfrac{s_{\alpha}}{s_p} = \frac{ {v_ \alpha }^{2} }{(2v_ \alpha) {}^{2} } \\ \end{gathered}

:⟼

s

p

s

α

=

(2v

α

)

2

v

α

2

\begin{gathered}:\longmapsto \sf\dfrac{s_{\alpha}}{s_p} = \frac{{ \cancel{v_ \alpha }^{2}} }{4 \: \cancel{v_ \alpha {}^{2} }} \\ \end{gathered}

:⟼

s

p

s

α

=

4

v

α

2

v

α

2

\purple{ \Large :\longmapsto \underline {\boxed{{\pmb{\dfrac{s_{p}}{s_ \alpha } = \frac{4}{1} } }}}}:⟼

s

α

s

p

=

1

4

s

α

s

p

=

1

4

Explanation:

NII BRO...G00GLE SE DEKHA

Similar questions