Can we get a remainder of degree 3 by dividing a polynomial of degree 5 by another polynomial of degree 3?
Answers
Answer:
ANSWER :
\begin{gathered} \\ \end{gathered}
❖ If the perimeter of a square is equal to the perimeter of a rectangle and the side of square is 30 cm and length of the rectangle is 40 cm; then the breadth of the rectangle will be 20 cm.
___________________________________________________________
SOLUTION :
\begin{gathered} \\ \\ \end{gathered}
❒ Given :-
Perimeter of the Square = Perimeter of the Rectangle
Side of the Square = 30 cm
Length of the Rectangle = 40 cm
❒ To Calculate :-
Breadth of the Rectangle = ?
___________________________________________
❒ Required Formulas :-
\dag \: \: \underline{ \boxed{ \sf{ \: Perimeter \: \: of \: \: a \: \: Square = 4 \times Side \: }}}†
PerimeterofaSquare=4×Side
\dag \: \: \underline{ \boxed{ \sf{ \: Perimeter \: \: of \: \: a \: \: Rectangle = 2 (Length + Breadth) \: }}}†
PerimeterofaRectangle=2(Length+Breadth)
___________________________________________
❒ Calculation :-
We have,
Side of the Square = 30 cm
Using the formula of the Perimeter of a Square, we get,
★ Perimeter of the Square = 4 × Side
➨ Perimeter of the Square = 4 × 30 cm
➨ Perimeter of the Square = 120 cm
So, the Perimeter of the Square = 120 cm
\begin{gathered} \\ \end{gathered}
Again,
Perimeter of the Square = Perimeter of the Rectangle
Hence,
Perimeter of the Rectangle = 120 cm
We have,
Length of the Rectangle = 40 cm
\begin{gathered} \\ \end{gathered}
Using the formula of the Perimeter of a Rectangle, we get,
★ Perimeter of a Rectangle = 2 (Length + Breadth)
➜ 120 cm = 2 (40 cm + Breadth)
➜ 2 (40 cm + Breadth) = 120 cm
➜ 40 cm + Breadth = \rm{\dfrac{120 \: cm}{2}}
2
120cm
➜ 40 cm + Breadth = 60 cm
➜ Breadth = 60 cm - 40 cm
∴ Breadth = 20 cm
Hence, the Breadth of the Rectangle is 20 cm.