Physics, asked by davniderkaur1223, 10 months ago

can we give one coulmb of charge to a spherical of charge to a spherical conductor? justify your answer .​

Answers

Answered by DIWAKARrly
1

Answer:

Conductors contain free charges that move easily. When excess charge is placed on a conductor or the conductor is put into a static electric field, charges in the conductor quickly respond to reach a steady state called electrostatic equilibrium.

Figure 1 shows the effect of an electric field on free charges in a conductor. The free charges move until the field is perpendicular to the conductor’s surface. There can be no component of the field parallel to the surface in electrostatic equilibrium, since, if there were, it would produce further movement of charge. A positive free charge is shown, but free charges can be either positive or negative and are, in fact, negative in metals. The motion of a positive charge is equivalent to the motion of a negative charge in the opposite direction.

In part a, an electric field E exists at some angle with the horizontal applied on a conductor. One component of this field E parallel is along x axis represented by a vector arrow and other E perpendicular, is along y axis represented by a vector arrow. Charge inside the conductor moves along x axis so the force acting on it is F parallel, which is equal to q multiplied by E parallel. In part b, a charge is shown inside the conductor and electric field is represented by a vector arrow pointing upward starting from the surface of the conductor.

Figure 1. When an electric field E is applied to a conductor, free charges inside the conductor move until the field is perpendicular to the surface. (a) The electric field is a vector quantity, with both parallel and perpendicular components. The parallel component (E∥) exerts a force (F∥) on the free charge q, which moves the charge until F∥=0. (b) The resulting field is perpendicular to the surface. The free charge has been brought to the conductor’s surface, leaving electrostatic forces in equilibrium.

A conductor placed in an electric field will be polarized. Figure 2 shows the result of placing a neutral conductor in an originally uniform electric field. The field becomes stronger near the conductor but entirely disappears inside it.

A spherical conductor is placed in the external electric field. The field lines are shown running from left to right. The field lines enter and leave the conductor at right angles. Negative charges accumulate on the left surface of the conductor and positive charges accumulate on the right surface of the conductor.

Figure 2. This illustration shows a spherical conductor in static equilibrium with an originally uniform electric field. Free charges move within the conductor, polarizing it, until the electric field lines are perpendicular to the surface. The field lines end on excess negative charge on one section of the surface and begin again on excess positive charge on the opposite side. No electric field exists inside the conductor, since free charges in the conductor would continue moving in response to any field until it was neutralize

Similar questions