English, asked by xBeti, 1 month ago

can we increase elastic limit of material​

Answers

Answered by Ꭰɾєαмєɾ
0

Explanation:

Answer:

This means the material deforms irreversibly and does not return to its original shape and size, even when the load is removed. When stress is gradually increased beyond the elastic limit, the material undergoes plastic deformation. ... We can graph the relationship between stress and strain on a stress-strain diagram.

Explanation:

hope it is helpful to u

Answered by XBarryX
44

Explanation:

Answer:

Given :-

A student starting from his house walks at a speed of 2 ½ km/h and reaches his school 6 minutes late.

Next day starting at the same time he increases his speed by 1 km/h and reaches 6 minutes early.

To Find :-

What is the distance between the school and his house.

Solution :-

Let,

\mapsto↦ The time be x

\mapsto↦ The distance be y

Now,

\implies \sf Speed_{(Student)} =\: 2\dfrac{1}{2}\: km/h⟹Speed(Student)=221km/h

\implies \sf Speed_{(Student)} =\: \dfrac{4 + 1}{2}\: km/h⟹Speed(Student)=24+1km/h

\implies \sf \bold{\green{Speed_{(Student)} =\: \dfrac{5}{2}\: km/h}}⟹Speed(Student)=25km/h

Now, let's find the time :

\implies \sf Time =\: (x + 6)\: minutes⟹Time=(x+6)minutes

\begin{gathered}\implies \sf Time =\: \bigg(x + \dfrac{\cancel{6}}{\cancel{6}0}\bigg)\: hours\: \: \bigg\lgroup \sf\bold{1\: minutes =\: \dfrac{1}{60}\: hours}\bigg\rgroup\\\end{gathered}⟹Time=(x+606)hours⎩⎪⎪⎪⎧1minutes=601hours⎭⎪⎪⎪⎫

\begin{gathered}\implies \sf \bold{\green{Time =\: \bigg(x + \dfrac{1}{10}\bigg)\: hours}}\\\end{gathered}⟹Time=(x+101)hours

Now, as we know that :

\clubsuit♣ Speed Formula :

\begin{gathered}\mapsto \sf\boxed{\bold{\pink{Speed =\: \dfrac{Distance}{Time}}}}\\\end{gathered}↦Speed=TimeDistance

According to the question by using the formula we get,

\begin{gathered}\implies \sf \dfrac{5}{2} =\: \dfrac{y}{\bigg(x + \dfrac{1}{10}\bigg)}\\\end{gathered}⟹25=(x+101)y

\begin{gathered}\implies \sf \dfrac{5}{2} =\: \dfrac{y}{\bigg(\dfrac{10x + 1}{10}\bigg)}\\\end{gathered}⟹25=(1010x+1)y

\implies \sf \dfrac{5}{2} =\: \dfrac{y}{1} \times \bigg(\dfrac{10}{10x + 1}\bigg)⟹25=1y×(10x+110)

\implies \sf \dfrac{5}{2} =\: \dfrac{10y}{10x + 1}⟹25=10x+110y

By doing cross multiplication we get,

\implies \sf 5(10x + 1) =\: 2(10y)⟹5(10x+1)=2(10y)

\implies \sf 50x + 5 =\: 20y⟹50x+5=20y

\implies \sf 50x - 20y =\: - 5⟹50x−20y=−5

\begin{gathered}\implies \sf\bold{\purple{50x - 20y =\: - 5\: ------\: (Equation\: No\: 1)}}\\\end{gathered}⟹50x−20y=−5−−−−−−(EquationNo1)

Again,

\mapsto↦ Next day starting at the same time he increases his speed by 1 km/h and reaches 6 minutes early.

\implies \sf \dfrac{5}{2} + 1 =\: \dfrac{y}{\bigg(x - \dfrac{1}{10}\bigg)}⟹25+1=(x−101)

Similar questions