Can welive on the moon? Why?
Answers
Answer:
Is Earth's fresh air, endless biodiversity, and (relatively) stable average temperature getting you down? Ever wanted to drop everything and jet off to a place where life is simpler—or better yet, nonexistent? Then take a 238,900-mile jaunt to the solar system's premiere deserted destination: The moon. Our closest astronomical neighbor offers 14.6 million square miles of peace, quiet, and more shades of gray than you can count—perfect for a rustic getaway without all the distractions of nature.
Sound heavenly? Unfortunately, it'll take a lot more than a simple rocket trip to achieve lunar paradise. And the first folks to set up shop on the moon probably won't be building resorts and vacation homes—as of now, NASA wants to create what's basically a gas station for future trips to Mars. Astronauts would stop on the moon to refuel and stock up on supplies before embarking on an 8-month odyssey to the red planet.
Whether it becomes a 5-star hotel among the stars or the first 7-Eleven outside Earth's atmosphere, the tiny rock orbiting our planet is so desolate that we'll have to establish basic infrastructure to sustain life if humans are ever to settle down there. It won't be easy, but it's far from science fiction.
“Humans are fragile, and because we’re so fragile, we require so much,” says astrophysicist and planetary scientist Laura Forczyk, who owns the space consulting firm Astralytical.
ADVERTISEMENT / ADVERTISE WITH US
For starters, there's the moon's lack of a genuine atmosphere. Forczyk says it does have somewhat of a "pseudo-atmosphere" called an exosphere: a magnetically suspended mix of gases and particles stirred up from the lunar surface by solar wind. But the elements that make up breathable air float around the moon at infinitesimal concentrations compared to Earth. Taking a deep breath would be just as deadly on the moon as it would be in the vacuum of space.
Don't break out into a passionate rendition of Jordin Sparks' "No Air" just yet—thankfully, breathing could be the least of future lunar residents' worries. Forczyk says we've gotten really good at recycling air on the International Space Station through the Environmental Control and Life Support System. Along with a few lunar greenhouses to foster oxygen-emitting plants, a similar system could purify air and send it back through a network of sealed, controlled habitation modules in a lunar settlement, keeping us breathing easy for years. However, we'd have to send loads of those life-giving gases to the moon at least once to get the cycle going, which would be expensive: Shipping just a pound of material (even air, which would have to be pressurized in tanks) to the moon would cost more than $1.3 million.
The moon’s dinky exosphere poses other serious problems. Because there’s no air, there’s no wind, which means no erosion. That’s made the dust particles on the lunar surface—called regolith—especially troublesome. Unlike granules of sand on Earth, which appear round when observed under a microscope, regolith particles are sharp; meteorites and solar wind have hammered them, and there’s no fluid around to wear down those fractured edges. Getting sand out of your clothes at the beach would be a walk in the park compared to fielding these ultra-clingy particles, and they could cause problems for machines and humans working on the lunar surface.
No atmosphere also means no protection against meteorites, which hurtle toward the moon at breakneck speeds, threatening to puncture spacesuits and permanent structures. So if future humans on the moon see a shooting star, they’ll have to run for cover instead of making a wish.
While a lunar colony thankfully wouldn't have to account for hurricanes or other extreme atmospheric weather events, it'd have to shore up against an invisible—but highly hazardous—threat: solar storms. Unlike the Earth, the moon has no magnetic field to protect against highly charged electromagnetic particles emitted by the sun. During particularly intense solar flares, which eject bursts of high-energy light waves from beneath the sun's surface, even the Earth can't fully shield our electricity infrastructure from going haywire. Without that crucial magnetic field, a solar storm engulfing a lunar settlement could be potentially disastrous for human health and infrastructure. Thus, we'd have to use substances like water or polyethylene, which contain concentrations of hydrogen high enough to absorb the impact of these rogue space particles, to protect buildings on the moon from solar radiation.