Math, asked by pleaseblockme6, 2 months ago

Can you all answer this question​

Attachments:

Answers

Answered by VεnusVεronίcα
38

If a be the first term of an arithmetic progression and, the sum of its first p terms is zero, show that the sum of its next q terms is : \rm -\bigg\lgroup\dfrac{p+q}{p-1}\bigg\rgroup ~aq

 \\

\qquad________________

 \\

We have :

\quad★ First term of AP : a

\quad★ Sum of p terms : 0 \rm [S_p=0]

 \:

So, now let the common difference of this AP be d.

 \:

We know that :

\rm :\implies ~ S_n=\dfrac{n}{2}~ \{2a+(n-1)d\}

 \:

From the above formula, let's get d as we know that \rm S_p=0 :

\rm: \implies~ S_p:\dfrac{p}{2}[2a+(p-1)d]=0

\rm:\implies~ 2a+(p-1)d=0\bigg(\dfrac{2}{p}\bigg)

\rm :\implies~ 2a+(p-1)d=0

\rm :\implies~ d=\dfrac{-2a}{p-1}~~~~~[eq^n.1]

 \:

Now, let's find the sum of next q terms of the AP using the value of d from the above value.

Sum of next q terms = Sum of first p terms + q terms – Sum of p terms

\rm :\implies ~ S_{(p+q)}-S_p=S_{(p+q)}

\rm :\implies~ S_{(p+q)}-0=S_{(p+q)}~~~~~[\because ~ S_p=0]

\rm :\implies ~ S_{(p+q)}=S_{(p+q)}

:\rm\implies~ S_{(p+q)}=\dfrac{p+q}{2}[2a+(p+q-1)d]

\rm :\implies~ S_{(p+q)}=\dfrac{p+q}{2}[2a+(p+q-1)\bigg(\dfrac{-2a}{p-1}\bigg)~~~~~[From ~eq^n.1]

\rm :\implies ~ S_{(p+q)}=\dfrac{p+q}{2(p-1)}(2ap-2ap-2a+2a-2aq)

\rm :\implies ~ S_{(p+q)}=\dfrac{p+q}{2(p-1)}(-2aq)

\rm :\implies S_{(p+q)}=-\bigg\lgroup\dfrac{p+q}{p-1}\bigg\rgroup~aq

 \:

Henceforth, proved!

Similar questions