Math, asked by devikakrishnat, 6 hours ago

can you answer this please...​

Attachments:

Answers

Answered by mathdude500
3

Given Question

Draw the graph of the function

\begin{gathered}\begin{gathered}\bf\: f(x) \:  =  \: \begin{cases} &\sf{ \:  \: 1, \:  \: if \: x > 0} \\ &\sf{ \:  \: 0, \:  \: if \: x = 0} \\ &\sf{ - 1 \:  \: if \: x < 0} \end{cases}\end{gathered}\end{gathered}

 \green{\large\underline{\sf{Solution-}}}

Given function is

\begin{gathered}\begin{gathered}\bf\: f(x) \:  =  \: \begin{cases} &\sf{ \:  \: 1, \:  \: if \: x > 0} \\ &\sf{ \:  \: 0, \:  \: if \: x = 0} \\ &\sf{ - 1 \:  \: if \: x < 0} \end{cases}\end{gathered}\end{gathered}

Let assume that

\begin{gathered}\begin{gathered}\bf\: f(x) \:  =  \: \begin{cases} &\sf{ \:  \: 1, \:  \: if \: x > 0} \\ &\sf{ \:  \: 0, \:  \: if \: x = 0} \\ &\sf{ - 1 \:  \: if \: x < 0} \end{cases}\end{gathered}\end{gathered}

Case :- 1

 \purple{\rm :\longmapsto\:When \: x > 0, \:  \: y \:  =  \: 1}

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 1 & \sf 1 \\ \\ \sf 2 & \sf 1 \\ \\ \sf 3 & \sf 1 \end{array}} \\ \end{gathered}

Case :- 2

 \purple{\rm :\longmapsto\:When \: x  <  0, \:  \: y \:  =  \:  -  \: 1}

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf  - 1 & \sf  - 1 \\ \\ \sf  - 2 & \sf  - 1 \\ \\ \sf  - 3 & \sf  - 1 \end{array}} \\ \end{gathered}

Case :- 3

 \purple{\rm :\longmapsto\:When \: x  =  0, \:  \: y \:  = \: 0}

So, Range of the function

\begin{gathered}\begin{gathered}\bf\: f(x) \:  =  \: \begin{cases} &\sf{ \:  \: 1, \:  \: if \: x > 0} \\ &\sf{ \:  \: 0, \:  \: if \: x = 0} \\ &\sf{ - 1 \:  \: if \: x < 0} \end{cases}\end{gathered}\end{gathered}

 \purple{\rm :\longmapsto\:Range \: of \: f(x) \:  =  \:  \{ - 1, \: 0, \: 1 \}}

Attachments:
Answered by EmperorSoul
10

Given Question

Draw the graph of the function

\begin{gathered}\begin{gathered}\bf\: f(x) \:  =  \: \begin{cases} &\sf{ \:  \: 1, \:  \: if \: x > 0} \\ &\sf{ \:  \: 0, \:  \: if \: x = 0} \\ &\sf{ - 1 \:  \: if \: x < 0} \end{cases}\end{gathered}\end{gathered}

 \green{\large\underline{\sf{Solution-}}}

Given function is

\begin{gathered}\begin{gathered}\bf\: f(x) \:  =  \: \begin{cases} &\sf{ \:  \: 1, \:  \: if \: x > 0} \\ &\sf{ \:  \: 0, \:  \: if \: x = 0} \\ &\sf{ - 1 \:  \: if \: x < 0} \end{cases}\end{gathered}\end{gathered}

Let assume that

\begin{gathered}\begin{gathered}\bf\: f(x) \:  =  \: \begin{cases} &\sf{ \:  \: 1, \:  \: if \: x > 0} \\ &\sf{ \:  \: 0, \:  \: if \: x = 0} \\ &\sf{ - 1 \:  \: if \: x < 0} \end{cases}\end{gathered}\end{gathered}

Case :- 1

 \purple{\rm :\longmapsto\:When \: x > 0, \:  \: y \:  =  \: 1}

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 1 & \sf 1 \\ \\ \sf 2 & \sf 1 \\ \\ \sf 3 & \sf 1 \end{array}} \\ \end{gathered}

Case :- 2

 \purple{\rm :\longmapsto\:When \: x  <  0, \:  \: y \:  =  \:  -  \: 1}

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf  - 1 & \sf  - 1 \\ \\ \sf  - 2 & \sf  - 1 \\ \\ \sf  - 3 & \sf  - 1 \end{array}} \\ \end{gathered}

Case :- 3

 \purple{\rm :\longmapsto\:When \: x  =  0, \:  \: y \:  = \: 0}

So, Range of the function

\begin{gathered}\begin{gathered}\bf\: f(x) \:  =  \: \begin{cases} &\sf{ \:  \: 1, \:  \: if \: x > 0} \\ &\sf{ \:  \: 0, \:  \: if \: x = 0} \\ &\sf{ - 1 \:  \: if \: x < 0} \end{cases}\end{gathered}\end{gathered}

 \purple{\rm :\longmapsto\:Range \: of \: f(x) \:  =  \:  \{ - 1, \: 0, \: 1 \}}

Attachments:
Similar questions