can you answer this question please and fast
Attachments:
Answers
Answered by
0
Solution :-
Given -
OA = 5 cm, AB = 8 cm and OD is perpendicular to AB.
CD = ?
As, it is clear from the figure that OA (which is radius of the given circle) = OD = 5 cm
And,
AB = 8 cm, is a chord of the given circle.
A line from the center to the chord is the perpendicular bisector.
AC = CB = 1/2 of AB
⇒ 1/2 × 8 = 4 cm
So, AC = CB = 4 cm
Using Pythagoras Theorem -
(Hypotenuse)² = (Base)² + (Perpendicular)²
⇒ (OA)² = (AC)² + (OC)²
⇒ (5)² = (4)² + (OC)²
⇒ 25 = 16 + (OC)²
⇒ (OC)² = 25 - 16
⇒ (OC)² = 9
⇒ OC = √9
⇒ OC = 3 cm
As, OA = OD = 5 cm
Then,
CD = OD - OC
CD = 5 - 3
CD = 2 cm
So, the length of CD is 2 cm
Answer.
Given -
OA = 5 cm, AB = 8 cm and OD is perpendicular to AB.
CD = ?
As, it is clear from the figure that OA (which is radius of the given circle) = OD = 5 cm
And,
AB = 8 cm, is a chord of the given circle.
A line from the center to the chord is the perpendicular bisector.
AC = CB = 1/2 of AB
⇒ 1/2 × 8 = 4 cm
So, AC = CB = 4 cm
Using Pythagoras Theorem -
(Hypotenuse)² = (Base)² + (Perpendicular)²
⇒ (OA)² = (AC)² + (OC)²
⇒ (5)² = (4)² + (OC)²
⇒ 25 = 16 + (OC)²
⇒ (OC)² = 25 - 16
⇒ (OC)² = 9
⇒ OC = √9
⇒ OC = 3 cm
As, OA = OD = 5 cm
Then,
CD = OD - OC
CD = 5 - 3
CD = 2 cm
So, the length of CD is 2 cm
Answer.
Similar questions