Can you find the zeroes of the following polynomial and verify the relationship between the zeros and coefficient 6x^2-3-7x
Answers
Answered by
2
Given polynomial 6x² - 7x - 3
6x² - 7x - 3 = 0
⇒ 6x² +2x - 9x - 3 = 0
⇒ 2x(3x+1) - 3(3x+1) = 0
⇒ (3x+1) (2x-3) = 0
⇒ 3x+1 = 0 or 2x - 3 = 0
⇒ 3x = -1 or 2x = 3
⇒ x = -1/3 or x = 3/2
∴ The zeroes are -1/3 and 3/2
Comparing the polynomial with general form ax² + bx +c = 0
Here, a = 6, b = -7 , c = -3
α = -1/3 and β = 3/2
α+β = -b/a
⇒ -1/3 + 3/2 = -(-7)/6
⇒(-2 + 9)/6 = 7/6
⇒ 7/6 = 7/6
αβ = c/a
⇒ -1/3 × 3/2 = -3/6
⇒ -3/6 = -3/6
Verified....
6x² - 7x - 3 = 0
⇒ 6x² +2x - 9x - 3 = 0
⇒ 2x(3x+1) - 3(3x+1) = 0
⇒ (3x+1) (2x-3) = 0
⇒ 3x+1 = 0 or 2x - 3 = 0
⇒ 3x = -1 or 2x = 3
⇒ x = -1/3 or x = 3/2
∴ The zeroes are -1/3 and 3/2
Comparing the polynomial with general form ax² + bx +c = 0
Here, a = 6, b = -7 , c = -3
α = -1/3 and β = 3/2
α+β = -b/a
⇒ -1/3 + 3/2 = -(-7)/6
⇒(-2 + 9)/6 = 7/6
⇒ 7/6 = 7/6
αβ = c/a
⇒ -1/3 × 3/2 = -3/6
⇒ -3/6 = -3/6
Verified....
Similar questions