Can you find two integers m,n such that ?
Answers
Answered by
6
Solution :
************************************
We know the Exponential Law :
If a^m = a^n then m = n
************************************
Here ,
2^(m+n) = 2^mn
=> m + n = mn
=> n = mn - m
=> n = m( n - 1 )
=> n/( n - 1 ) = m
=> m = n/( n - 1 )
*******************************
But n/( n - 1 ) is an integer .
When n - 1 = 1
=> n = 1 + 1 = 2
********************************
=> m = 2/( 2 - 1 )
=> m = 2
Therefore ,
If m = n = 2,
then
2^(m+n) = 2^(mn)
••••••
************************************
We know the Exponential Law :
If a^m = a^n then m = n
************************************
Here ,
2^(m+n) = 2^mn
=> m + n = mn
=> n = mn - m
=> n = m( n - 1 )
=> n/( n - 1 ) = m
=> m = n/( n - 1 )
*******************************
But n/( n - 1 ) is an integer .
When n - 1 = 1
=> n = 1 + 1 = 2
********************************
=> m = 2/( 2 - 1 )
=> m = 2
Therefore ,
If m = n = 2,
then
2^(m+n) = 2^(mn)
••••••
Similar questions