Math, asked by kunalkumar1192001, 1 month ago

can you give all the answers...anyone who wants brainlist
I will give him 5 star and list him. plz give this all answers​

Attachments:

Answers

Answered by Tan201
1

Answer:

(a) 6^{3} × 4^{3}=13824

(b)  (2)^{-5 × (3)^{-5}=\frac{1}{7776}

(c) \frac{3^{-5}(10^{-4})(5^{4})}{5^{2}(6^{-5})}=\frac{2}{25}

(d) (\frac{5}{11})^5 ÷ (\frac{15}{11} )^5=\frac{1}{243}

(e) (3^0+3^{-1})2^2=\frac{16}{3}

(f) (3^{-1 × 6^{-1}) ÷  3^3=\frac{1}{486}

(g) \frac{4^{-2}(5^{3})}{2^{-6}}=500

(h) \frac{3^{-5}(2^{-5})(5^3)}{5^{-1}(6^{-5}}=625

Step-by-step explanation:

(a)

6^{3} × 4^{3}

=(6 × 4)^3 (a^{m} × b^{m}=(a × b)^m)

24^3

13824

6^{3} × 4^{3}=13824

(b)

(2)^{-5 × (3)^{-5

=(2 × 3)^{-5 (a^{m} × b^{m}=(a × b)^m)

6^{-5

\frac{1}{6^5} (a^{-m}=\frac{1}{a^m})

\frac{1}{7776}

∴  (2)^{-5 × (3)^{-5}=\frac{1}{7776}

(c)

\frac{3^{-5}(10^{-4})(5^{4})}{5^{2}(6^{-5})}

=\frac{3^{-5}(10^{-4})(5)^{4-2}}{6^{-5}}  (\frac{a^m}{a^n}=a^{m-n})

\frac{3^{-5}(10^{-4})(5)^2}{6^{-5}}

(\frac{3}{6})^{-5}(10^{-4})(5^{2}) (\frac{a^m}{b^m} =(\frac{a}{b})^m)

(\frac{1}{2})^{-5}(10^{-4})(5^{2})

(2)^{5}(\frac{1}{10^{4}})(25) (\frac{1}{a^{-m}}=a^m, a^{-m}=\frac{1}{a^m} )

\frac{(32)(25)}{10000}

\frac{800}{10000}

\frac{8}{100}

\frac{4}{50}

\frac{2}{25}

\frac{3^{-5}(10^{-4})(5^{4})}{5^{2}(6^{-5})}=\frac{2}{25}

(d)

(\frac{5}{11})^5 ÷ (\frac{15}{11} )^5

=(\frac{5}{11} ÷ \frac{15}{11})^{5} (a^{m} ÷ b^m=(a ÷ b)^m

(\frac{5}{11} × \frac{11}{15})^5

(\frac{5}{15})^5

(\frac{1}{3})^5

\frac{1}{243}

(\frac{5}{11})^5 ÷ (\frac{15}{11} )^5=\frac{1}{243}

(e)

(3^0+3^{-1})2^2

=(1+\frac{1}{3})4 (a^{-m}=\frac{1}{a^{m}}, a^0=1)

(\frac{3+1}{3}) 4

(\frac{4}{3})4

\frac{16}{3}

(3^0+3^{-1})2^2=\frac{16}{3}

(f)

(3^{-1 × 6^{-1}) ÷  3^3

=(3 × 6)^{-1} ÷ 27  (a^{m} × b^{m}=(a × b)^m)

(18)^{-1} ÷ 27

\frac{1}{18} × \frac{1}{27} (a^{-m}=\frac{1}{a^{m}})

\frac{1}{486}

(3^{-1 × 6^{-1}) ÷  3^3=\frac{1}{486}

(g)

\frac{4^{-2}(5^{3})}{2^{-6}}

=\frac{(2^{2})^{-2}(5^3)}{2^{-6}} (4=2^2)

\frac{2^{-4}(5^3)}{2^{-6}} ((a^m)^n=a^{mn})

(2)^{-4-(-6)}(5^3) (\frac{a^m}{a^n}=a^{m-n})

(2)^{-4+6}(5^3)

(2)^{2}(5^3)

4 × 125

500

\frac{4^{-2}(5^{3})}{2^{-6}}=500

(h)

\frac{3^{-5}(2^{-5})(5^3)}{5^{-1}(6^{-5}}

=\frac{[(3)(2)]^{-5} (5)^3}{5^{-1}(6^{-5})} (a^{m} × b^{m}=(a × b)^m)

\frac{(6^{-5})(5^3)}{(6^{-5})(5^{-1})}

\frac{5^3}{5^{-1}}

(5)^{3-(-1)} (\frac{a^m}{a^n}=a^{m-n})

5^{3+1}

5^4

625

\frac{3^{-5}(2^{-5})(5^3)}{5^{-1}(6^{-5}}=625

Similar questions