Can you make a story of what happened to this rock formation
Answers
Extrusive, or volcanic, igneous rocks are formed when molten hot material cools and solidifies. There are three main types of rocks: sedimentary, igneous, and metamorphic. Each of these rocks are formed by physical changes—such as melting, cooling, eroding, compacting, or deforming—that are part of the rock cycle.
Hope it's helpful
Thank you :)
Answer:
The rock cycle, illustrated in Figure below, depicts how the three major rock types – igneous, sedimentary, and metamorphic - convert from one to another. Arrows connecting the rock types represent the processes that accomplish these changes.
Rocks change as a result of natural processes that are taking place all the time. Most changes happen very slowly. Rocks deep within the Earth are right now becoming other types of rocks. Rocks at the surface are lying in place before they are next exposed to a process that will change them. Even at the surface, we may not notice the changes. The rock cycle has no beginning or end.
The Three Rock Types
Rocks are classified into three major groups according to how they form. These three types are described in more detail in other concepts in this chapter, but here is a summary.
Igneous rocks form from the cooling and hardening of molten magma in many different environments. The chemical composition of the magma and the rate at which it cools determine what rock forms. Igneous rocks can cool slowly beneath the surface or rapidly at the surface. These rocks are identified by their composition and texture. More than 700 different types of igneous rocks are known.
- Sedimentary rocks form by the compaction and cementing together of sediments, broken pieces of rock-like gravel, sand, silt, or clay. Those sediments can be formed from the weathering and erosion of preexisting rocks. Sedimentary rocks also include chemical precipitates, the solid materials left behind after a liquid evaporates.
- Metamorphic rocks form when the minerals in an existing rock are changed by heat or pressure below the surface.
Explanation: