Math, asked by tirth317, 1 year ago

can you please solve the question given below​

Attachments:

Answers

Answered by rishu6845
0

Answer:

plzzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by bedabrata85
1

Answer:

 \sin( \alpha )  =  \frac{ {p}^{2}  - 1}{ {p}^{2} + 1 }

RHS

 \frac{{( \sec\alpha  +  \tan \alpha   )}^{2} - 1 }  {( \sec\alpha  +  \tan \alpha) ^{2}    + 1 } \\ let \:  (\sec \alpha  +  \tan\alpha ) \:  be \: x \\  =  \frac{ {x}^{2}  +   \tan^{2} \alpha   -  \sec^{2}  \alpha }{ {x}^{2}  +  \sec ^{2} \alpha -  \tan ^{2} \alpha    }  \\  =  \frac{ {x}^{2} + ( \tan\alpha   +  \sec\alpha )( \tan\alpha  -  \sec \alpha )  }{ {x}^{2} + x( \sec\alpha  -  \tan\alpha )   }  \\  =let \: tan \alpha  - sec \alpha  \: be \: y  \\  =  \frac{ {x}^{2}  + xy}{ {x}^{2}  - xy }  \\  =  \frac{x(x + y)}{ {x}(x - y) } \\  =  \frac{ 2\tan \alpha  }{2 \sec\alpha  }   \\  =  \ \frac{ \sin \alpha  }{ \cos\alpha  }   \times    \cos \alpha   \\  =  \sin \alpha

Therefore LHS = RHS ,

Hence Verified

Similar questions