Can you Please Solve this Q
??
Attachments:
Answers
Answered by
0
no............ matrix
Answered by
1
@
(43) Question Solⁿ
x + 1/x = √3
cubing both sides.
x³ + 1/x³ (x+1/x) = (√3)³
⇒ x³ + 1/x³ + 3√3 = 3√3
⇒ x³ + 1/x³ + 3√3 = 3√3
⇒ x³ + 1/x³ = 0
Now, x18 + x12 + x6 + 1
= x12 (x6+1) + 1 (x6+1)
= (x12+1)(x6+1)
=(x12+1). x³ (x³+ 1/x³)
= (x12+1) • x³(0)
=0
(44) Question Solⁿ
x² + 2 = 2x
x² - 2x + 2 = 0
(x⁴ - x³ + x² + 2) / (x² - 2x + 2) = (x² + x + 1)
(x⁴ - x³ + x² + 2) = (x² - 2x + 2) (x² + x + 1)
(x⁴ - x³ + x² + 2) = 0 * (x² + x + 1)
(x⁴ - x³ + x² + 2) = 0
@:-)
(43) Question Solⁿ
x + 1/x = √3
cubing both sides.
x³ + 1/x³ (x+1/x) = (√3)³
⇒ x³ + 1/x³ + 3√3 = 3√3
⇒ x³ + 1/x³ + 3√3 = 3√3
⇒ x³ + 1/x³ = 0
Now, x18 + x12 + x6 + 1
= x12 (x6+1) + 1 (x6+1)
= (x12+1)(x6+1)
=(x12+1). x³ (x³+ 1/x³)
= (x12+1) • x³(0)
=0
(44) Question Solⁿ
x² + 2 = 2x
x² - 2x + 2 = 0
(x⁴ - x³ + x² + 2) / (x² - 2x + 2) = (x² + x + 1)
(x⁴ - x³ + x² + 2) = (x² - 2x + 2) (x² + x + 1)
(x⁴ - x³ + x² + 2) = 0 * (x² + x + 1)
(x⁴ - x³ + x² + 2) = 0
@:-)
Similar questions