Math, asked by harshikesh5936, 8 months ago

can you please tell how we derived

formulas in
boldened letters

Attachments:

Answers

Answered by VishnuPriya2801
17

Question:-

Derivation of Sum & Product of the zeroes of a quadratic equation ax² + bx + c.

i.e., we have to prove that

  • α + β = - b/a

  • αβ = c/a

Answer:-

We know:

If x is the one of the zeroes of a Quadratic polynomial ,

 \sf \implies \: x =  \dfrac{  -   \: b \pm \:  \sqrt{ {b}^{2}  - 4ac} }{2a}

So,

 \sf \implies \:  \alpha  =  \frac{ - b +  \sqrt{ {b}^{2}  - 4ac} }{2a}   \:  \:  -  -  \:  \: equation \: (1)\\

And,

 \implies \sf \:  \beta  =  \frac{ - b -  \sqrt{ {b}^{2}  - 4ac} }{2a}  \:  \:  -  -  \:  \: equation \: (2) \\

Add equations (1) & (2).

 \implies \sf \:  \alpha  +  \beta  =  \frac{ - b +  \sqrt{ {b}^{2} - 4ac } }{2a}  +  \frac{ - b -  \sqrt{ {b}^{2} - 4ac } }{2a}  \\  \\  \implies \sf \: \:  \alpha  +  \beta  =  \frac{ - b +   \cancel{\sqrt{ {b}^{2} - 4ac } }  - b -  \cancel{ \sqrt{ {b}^{2}  - 4ac}}  }{2a}  \\  \\  \implies \sf \: \: \alpha  +  \beta  =   \frac{ - \cancel{ 2}b}{ \cancel{2}a}  \\  \\  \implies \sf \red{ \: \alpha  +  \beta  =  \frac{ - b}{a} }

Now,

Multiply equation (1) & (2).

 \:  \implies \sf \: \:  \alpha  \beta  =  \bigg( \dfrac{ - b +  \sqrt{ {b}^{2}  - 4ac} }{2a}  \bigg) \bigg( \dfrac{ - b -  \sqrt{ {b}^{2} - 4ac } }{2a}  \bigg) \\  \\  \implies \sf \: \alpha  \beta  =  \frac{( - b +  \sqrt{ {b}^{2} - 4ac })( - b -  \sqrt{ {b}^{2} - 4ac } ) }{2a  \times 2a}

using (a + b)(a - b) = - we get,

 \:  \implies \sf \: \:  \alpha  \beta  =  \frac{( - b) ^{2} - ( \sqrt{ {b}^{2}  - 4ac} ) ^{2}  }{4 {a}^{2} }  \\  \\  \implies \sf \: \alpha  \beta  =  \frac{ {b}^{2}  -  {b}^{2} + 4ac }{4 {a}^{2} }  \\  \\  \implies \sf \: \alpha  \beta  =  \frac{ \cancel{4a}c}{ \cancel{4} {a}^{ \cancel 2} }  \\  \\  \implies \sf \: \red{ \alpha  \beta  =  \frac{c}{a} }

Hence, derived that ,

  • α + β = - b/a

  • αβ = c/a

Similar questions