Math, asked by brainyssincerely, 11 months ago

Can you please work out the sum ​

Attachments:

Answers

Answered by ShresthaTheMetalGuy
4

Answer:

 \frac{1 - \sin(θ). \cos(θ)  }{ \cos(θ) ( \sec(θ)  - cosec(θ)}  \times  \frac{ \sin {}^{2} (θ) -  \cos {}^{2} (θ)  }{ \sin {}^{3} (θ)  +  \cos {}^{3} (θ) }

[ ∵ secθ=1/cosθ, & cosecθ=1/sinθ ]

[ ∵ a²–b²=(a+b)(a–b) ], &

[ ∵ a³+b³=(a+b)(a²–ab+b²) ]

 \frac{1 -  \sin(θ) \cos(θ)  }{ \cos(θ)( \frac{1}{ \cos(θ)  }   -  \frac{1}{ \sin(θ) } )}  \times  \frac{ (\sin(θ)  +  \cos(θ))( \sin(θ)  -  \cos(θ)) }{( \sin(θ)  +  \cos(θ))( \sin {}^{2} (θ)  +  \cos {}^{2} (θ) -  \sin(θ)  \cos(θ)  ) }

[ ∵ sin²θ+cos²θ=1 ]

 \frac{(1 -  \sin( θ)  \cos(θ) ) }{  \frac{ \sin(θ)   - \cos(θ)  }{ \cos(θ) } }   \times  \frac{ \sin(θ) -  \cos(θ)  }{(1 -  \sin(θ) \cos(θ ))  }

 \frac{ \sin(θ) }{( \sin(θ)  -  \cos(θ)) }  \times  {( \sin(θ) -  \cos(θ) ) }

⇒ \sin(θ)

Similar questions