Math, asked by vvineetjain115, 1 year ago

can you plz solve this for a 100 points​

Attachments:

Answers

Answered by preeth3
4
Hope this helps you
And if you have any doubt ask me I will help you

And thank you for asking me the question

Solution
Attachments:
Answered by Anonymous
5

 \huge \underline{ \underline{ \bf{ solution}}} :  -

According to the question:-

 \frac{ \cot(a ) \cos(a)  }{ \cot(a)  +  \cos(a) }  =  \frac{ \cot(a)  -  \cos(a) }{ \cot(a) \:  \cos(a)  }  \\  \\  taking \: left \: hand \: side \\  \\  \implies \: \frac{ \cot(a ) \cos(a)  }{ \cot(a)  +  \cos(a) }   \\  \\ rationalising \: by \:   \:  \: \cot(a)  -  \cos(a)  \\   \\  \implies \:  \frac{ \cot(a) \cos(a)  \big( \cot(a)  -  \cos(a)  \big) }{ { \cot}^{2} a \:  -  { \cos }^{2}a }  \\  \\  \implies \:  \frac{ \: \cot(a) \cos(a)  \big( \cot(a)  -  \cos(a)  \big)  \: }{ \frac{  { \cos }^{2} a}{ { \sin}^{2} a}  \bigg(1 -  { \sin }^{2} a \bigg)} \\  \\  \implies \:   \frac{ \:  \:  \cot(a) \cos(a)  \big( \cot(a)  -  \cos(a)  \big) \: \: }{  \frac{ { \cos}^{4}a }{ { \sin}^{2} a} }  \\  \\ \implies \:   \frac{ \sin \: a}{ { \cos}^{2}a }  \bigg( \cot \: a \:   -  \cos \: a \bigg) \\  \\  \implies \:  \frac{ \cot \: a -  \cos \: a }{ \cos \: a \: . \cot \: a}  \\  \\

Hence proved .

Similar questions