Math, asked by KurumiChan, 1 month ago

can you show me how its done,i'm quite lost at some point .

Attachments:

Answers

Answered by shrinivasnavindgikar
1

Step-by-step explanation:

its easy

refer pic

pls thank follow and mark as brainliest

Attachments:
Answered by AestheticSky
4

\implies \sf \:  \dfrac{ \cos^{2} (\theta) }{1 -  \tan(\theta) }  +  \dfrac{ \sin ^{3} (\theta) }{ \sin(\theta) -  \cos(\theta)  }  \\  \\  \implies\frac{ \ \cos^{2} (\theta)  }{1 -  \dfrac{ \sin(\theta) }{ \cos(\theta) } }  +  \frac{ \sin^{3} (\theta) }{ \sin(\theta ) \cos(\theta)  }  \\  \\  \implies\frac{ \cos^{2} (\theta) }{ \dfrac{ \ \cos(\theta)  -  \sin(\theta) }{ \cos(\theta) } }  + \frac{ \sin^{3} (\theta) }{ \sin(\theta ) -  \cos(\theta)  }  \\  \\  \implies\frac{ \cos^{3} (\theta) }{ \cos(\theta)  - \sin(\theta)  }  + \frac{ \sin^{3}  (\theta) }{ \sin(\theta ) -  \cos(\theta)  } \\  \\   \implies\frac{ \cos^{3} (\theta) }{ \cos(\theta)  - \sin(\theta)  } -   \frac{ \sin^{3}  (\theta) }{  \cos (\theta ) -  \sin(\theta)  } \\  \\  \implies\frac{ \cos^{3} (\theta) -  \sin^{3} (\theta)  }{ \cos(\theta) -  \sin(\theta)  }  \\  \\  \implies\frac{ \cancel{(\cos(\theta) -   \sin(\theta) )}( \cos ^{2}(\theta) +  \sin ^{2} (\theta) + 2. \sin(\theta). \cos(\theta) )    }{  \cancel{\cos(\theta) - \sin(\theta)}  }  \\  \\ \implies1 + 2 \sin(\theta)  \cos(\theta)

______________________

in the last 5th step I have taken -ve sign common in order to make the denominators same.

I hope this helps uh

Similar questions