Can you solve the equation please
Answers
Step-by-step explanation:
We have,
(a + b) = √5 ---- 1
(a - b) = √3 ----- 2
Adding both the equation we get,
(a + b) + (a - b) = √5 + √3
a + b + a - b = √5 + √3
2a = √5 + √3
a = (√5 + √3)/2
Thus, we get,
a = (√5 + √3)/2 ------ 3
Now,
(1/a) = 1 ÷ (√5 + √3)/2
(1/a) = 1 × 2/(√5 + √3)
(1/a) = 2/(√5 + √3)
Rationalizing the denominator,
(1/a) = [2 × (√5 - √3)]/[(√5 + √3) × (√5 - √3)]
Using the identity,
(x + y)(x - y) = x² - y²
(1/a) = 2(√5 - √3)/[(√5)² - (√3)²]
(1/a) = 2(√5 - √3)/[5 - 3]
(1/a) = 2(√5 - √3)/2
(1/a) = (2√5 - 2√3)/2 ----- 4
Now, we must find
(a + (1/a))²
From eq.3 and eq.4 we get
= [((√5 + √3)/2) + (2√5 - 2√3)/2]²
= [(√5 + √3 + 2√5 - 2√3)/2]²
= [(3√5 - √3)/2]²
Using the identity,
(a - b)² = a² - 2ab + b²
= [((3√5)² - 2(3√5)(√3) + (√3)²)/2²]
= [(3²(√5)² - 6√15 + 3)/4]
= (9(5) - 6√15 + 3)/4
= (45 - 6√15 + 3)/4
= (48 - 6√15)/4
= 2(24 - 3√15)/4
= (24 - 3√15)/2
Thus,
(a + (1/a)²) = (24 - 3√15)/2
Hence proved.
Hope it helped and believing you understood it....All the best