Math, asked by harshitmehta028, 1 year ago

Can you Solve the marked question?

Attachments:

Answers

Answered by ihrishi
0

Step-by-step explanation:

In parallelogram PQRS:

 \angle SPQ + \angle RQP = 180\degree  \\  \therefore \:  \frac{1}{2} \angle SPQ + \frac{1}{2}\angle RQP =\frac{1}{2} \times   180\degree  \\ \therefore \:  \frac{1}{2} \angle SPQ + \frac{1}{2}\angle RQP = 90\degree.....(1) \\  \because  \\ In  \: parallelogram \:  PQRS,  \:  \\ PO  \: and  \: RO  \: are  \: the  \: angle  \:  \\ bisectors  \:  of \:   \angle  \: P  \: and  \:  \angle  \: Q \:  \\  respectively.  \\\therefore \angle OPQ=   \frac{1}{2} \angle SPQ..... (2)\\</p><p>and\: \angle OQP=   \frac{1}{2} \angle RQP......(3)\\From\: equations\: (1), (2) \:&amp; \: (3)\\</p><p>\fbox {\angle OPQ+ \angle OQP= 90\degree} ....(4)\\</p><p>In\: \triangle\: OPQ\\</p><p>\fbox{\angle OPQ+ \angle OQP} + \angle POQ= 180\degree\\</p><p>90\degree + \angle POQ= 180\degree\\</p><p>\implies \angle POQ= 180\degree-90\degree\\</p><p>\implies \angle POQ= 90\degree\\

Thus proved.

Similar questions