Math, asked by dontmess, 1 year ago

can you solve this fast please ​

Attachments:

Answers

Answered by RvChaudharY50
159

Question :--- solve for x :- 2/(x+1) + 3/2(x-2) = 23/5x , where , x ≠ 0, -1 , 2 .

Solution :---

2/(x+1) + 3/2(x-2) = 23/5x

Taking LCM of denominator in LHS , we wet,

[ 2*2*(x-2) + 3(x+1) ] /2(x+1)(x-2) = 23/5x

→ [ 4x - 8 + 3x + 3 ] / [ 2x² - 2x -4 ] = 23/5x

Cross - Multiply Now,

35x² - 25x = 46x² - 46x - 92

→ 46x² - 35x² - 46x + 25x -92 = 0

→ 11x² - 21x - 92 = 0

______________________________

Now, According to Sridharacharya formula for solving Quadratic Equation ax² + bx + c = 0, have Roots :---

==>> [ -b ± √(b²-4ac) ] / 2a

______________________________

we have to Solve 11x² - 21x - 92 = 0

Here,

a = 11

→ b = (-21)

→ c = (-92)

Putting all Values in above Formula we get,

==>> [ 21 ± √(441 + 4048) ] / 2*11

==>> [ 21 ± √4489 ] / 22

==>> [ 21 ± 67 ] /22

So, we get,

x = (21+67)/22 , or, x = (21-67)/22

→ x = 4 or, x = (-23)/11

Hence, value of x will be 4 and (-23/11) .

Answered by Sharad001
64

QuesTion :-

 \bf \: Solve \:  for \:  x  \:  \\  \to \:  \frac{2}{x + 1}  +  \frac{3}{2(x - 2)}  =  \frac{23}{5x} , x ≠ 0 ,  - 1 , 2 \:

Answer :-

\to \boxed{x =  \frac{ - 23}{11}  \: or \: 4} \:  \:

Solution :-

We have ,

 \to \:  \frac{2}{x + 1}  +  \frac{3}{2(x - 2)}  =  \frac{23}{5x} \:  \\  \\  \sf{Taking \:  LCM  \: } \\  \\  \to \:  \frac{4(x - 2) + 3(x + 1)}{2(x + 1)(x - 2)}  =  \frac{23}{5x}  \\  \\  \to \:  \frac{4x - 8 + 3x + 3}{2(x + 1)(x - 2)}  =  \frac{23}{5x}  \\  \\  \to \:  \frac{7x  - 5}{2(x + 1)(x - 2)}    =  \:  \frac{23}{5x}  \\  \\ \sf \: Cross \:  multiplication  \\   \to \: 5x(7x - 5) = 46( {x}^{2}  - 2x + x - 2) \\  \\  \to \: 35 {x}^{2}  - 25x = 46 {x}^{2}  - 46x - 92 \\  \\  \to \: 46 {x}^{2}  - 35 {x}^{2}  - 46x + 25x - 92 = 0 \\  \\  \to \: 11 {x}^{2}  - 21x - 92 = 0 \\  \sf</p><p>Now  \: apply  \: shri \:  dharacharya \:  formula  \:  \\  \\  \to \: x =  \frac{ - ( - 21) +  \sqrt{ {( - 21)}^{2} - 4  \times 11 \times ( - 92) } }{2 \times 11}  \\  \:  \:  \: or \: \frac{ - ( - 21)  -  \sqrt{ {( - 21)}^{2} - 4  \times 11 \times ( - 92) } }{2 \times 11} \:  \\  \\  \to \: x =  \frac{21 -  \sqrt{441 + 44 \times 92} }{22}  \: or \: \frac{21   +   \sqrt{441 + 44 \times 92} }{22}   \:  \\  \\  \to \: x =  \frac{21 - 67}{22}  \: or \:  \frac{21 + 67}{22}  \\  \\  \to \: x =  \frac{ - 46}{22}  \: or \:  \frac{88}{22}  \\  \\  \to \boxed{x =  \frac{ - 23}{11}  \: or \: 4} \:

Similar questions