Math, asked by shajisurendran821, 1 month ago

can you solve this integral​

Attachments:

Answers

Answered by TrustedAnswerer19
24

Answer:

 \green{ \boxed{\displaystyle \int \bf \: \frac{sin \sqrt{x} }{ \sqrt{x} }  =  - 2cos \:  \sqrt{x}  + c \: }}

Step-by-step explanation:

 \displaystyle \int \bf \: \frac{sin \sqrt{x} }{  \pink{\sqrt{x} }  } \: \pink{ dx }\\   \\ \bf  \: substitute \:  \: u =  \sqrt{x }  \\  \bf \implies \:  \frac{du}{dx}  =  \frac{1}{ 2\sqrt{x} }  \\ \bf \implies \: 2 \: du =  \pink{ \frac{dx}{ \sqrt{x} } } \\  \\  = \displaystyle 2\int \bf \: \: sin \: u \: du \\  \\  = \bf - 2 \: cos \: u  + c\:  \:  \:  \:   \red{\{  \because \: \displaystyle \int \bf \:sin \: x \: dx =  \: -  cos \: x + c \:  \}} \\  \\  \bf =  - 2cos \sqrt{x}  + c

Extra formula :

 \odot\: \: \: \displaystyle \bf\int \dfrac{1}{x} \: dx =log |x |+ C \\ \\ \odot \: \: \: \displaystyle \bf\int {a}^{x} \: dx = \frac{ {a}^{x} }{log \: a} + C \\ \\  \odot \: \: \: \displaystyle \bf\int sinx \: dx = - cosx + C \\ \\  \odot\: \: \: \displaystyle \bf\int cosx \: dx =sinx + C \\ \\  \odot \: \: \: \displaystyle \bf\int sec {}^{2} x \: dx =tanc + C \\ \\  \odot \: \: \: \displaystyle \bf\int {cosec}^{2} x \: dx = - cotx + C \\ \\  \odot \: \: \: \displaystyle \bf\int secx.tanx \: dx =secx + C \\ \\  \odot \: \: \: \displaystyle \bf\int cosecx.cotx \: dx = - cosecx + C \:

Similar questions