Math, asked by samalbishnu001, 1 month ago

can you solve this problem??? ​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Given- }}

\rm :\longmapsto\:x \sqrt{1 + y} + y \sqrt{1 + x} = 0

\large\underline{\sf{To\:prove - }}

 \purple{\rm :\longmapsto\: {(1 + x)}^{2} \dfrac{dy}{dx}  + 1 = 0}

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

 \red{\boxed{ \bf{ \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}}}}

 \red{\boxed{ \bf{ \: \dfrac{d}{dx}x = 1}}}

 \red{\boxed{ \bf{ \: \dfrac{d}{dx}k = 0}}}

 \red{\boxed{ \bf{ \: \dfrac{d}{dx} \frac{u}{v} =  \frac{v\dfrac{d}{dx}u \:  -  \: u\dfrac{d}{dx}v}{ {v}^{2} }}}}

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:x \sqrt{1 + y} + y \sqrt{1 + x} = 0

can be rewritten as

\rm :\longmapsto\:x \sqrt{1 + y}  =  -  y \sqrt{1 + x}

On squaring both sides, we get

\rm :\longmapsto\: {x}^{2}(1 + y) =  {y}^{2}(1 + x)

\rm :\longmapsto\: {x}^{2} + y {x}^{2}  =  {y}^{2} + x {y}^{2}

\rm :\longmapsto\: {x}^{2} - {y}^{2}  =  x{y}^{2} - y {x}^{2}

\rm :\longmapsto\:(x + y)(x - y) = xy(y - x)

\rm :\longmapsto\:(x + y) \:  \cancel{(x - y)} =  - xy \:  \cancel{(x - y)}

\rm :\longmapsto\:x + y =  - xy

\rm :\longmapsto\:x =  - xy - y

\rm :\longmapsto\:x =  -y(1 + x)

\rm :\implies\: - y = \dfrac{x}{1 + x}

On Differentiating both sides w. r. t. x, we get

\rm :\longmapsto\: - \dfrac{d}{dx}y =\dfrac{d}{dx} \:  \dfrac{x}{1 + x}

\rm :\longmapsto\: - \dfrac{dy}{dx} = \dfrac{(x + 1)\dfrac{d}{dx}x - x \dfrac{d}{dx}(x + 1)}{ {(x + 1)}^{2} }

\rm :\longmapsto\: - \dfrac{dy}{dx} =  \dfrac{(x + 1) \times 1 - x(1 + 0)}{ {(x + 1)}^{2} }

\rm :\longmapsto\: - \dfrac{dy}{dx} =  \dfrac{x + 1 - x}{ {(x + 1)}^{2} }

\rm :\longmapsto\: - \dfrac{dy}{dx} =  \dfrac{1}{ {(x + 1)}^{2} }

\rm :\longmapsto\: \dfrac{dy}{dx} =  -  \:  \dfrac{1}{ {(x + 1)}^{2} }

\rm :\longmapsto\:  {(x + 1)}^{2} \dfrac{dy}{dx} =   - 1

\rm :\longmapsto\:  {(x + 1)}^{2} \dfrac{dy}{dx} + 1 = 0

\large{\boxed{\bf{Hence, Proved}}}

Additional Information :-

 \red{\boxed{ \bf{ \: \dfrac{d}{dx}sinx = cosx}}}

 \red{\boxed{ \bf{ \: \dfrac{d}{dx}cosx =  - sinx}}}

 \red{\boxed{ \bf{ \: \dfrac{d}{dx}tanx =   {sec}^{2} x}}}

 \red{\boxed{ \bf{ \: \dfrac{d}{dx}cotx =    -  \: {cosec}^{2} x}}}

 \red{\boxed{ \bf{ \: \dfrac{d}{dx}secx =  \: secx \: tanx}}}

 \red{\boxed{ \bf{ \: \dfrac{d}{dx}cosecx = -   \: cosecx \: cotx}}}

 \red{\boxed{ \bf{ \: \dfrac{d}{dx} \sqrt{x} =  \frac{1}{2 \sqrt{x} }}}}

Similar questions