English, asked by 6g34shristikumari, 3 days ago

candy machine speech​

Answers

Answered by nileshmahamuni8855
0

Answer:

Answer:

The new mean of new observations is

\displaystyle{\boxed{\red{\sf\:\dfrac{m\:+\:xy}{x}\:}}}

x

m+xy

Step-by-step-explanation:

Let the number of observations be n.

And the observations be a₁, a₂, a₃, a₄,....,aₙ

We have given that,

The mean of certain number of observations is m.

We know that,

\displaystyle{\boxed{\pink{\sf\:Mean\:=\:\dfrac{Sum\:of\:observations}{No.\:of\:observations}}}}

Mean=

No.ofobservations

Sumofobservations

\displaystyle{\implies\sf\:m\:=\:\dfrac{a_1\:+\:a_2\:+\:a_3\:+\:a_4\:+\:\cdots\:+\:a_n}{n}}⟹m=

n

a

1

+a

2

+a

3

+a

4

+⋯+a

n

From the given condition,

Each observation is divided by x ( x ≠ 0 ) and increased by y.

\displaystyle{\therefore\:\sf\:New\:observations\:=\:\dfrac{a_1}{x}\:+\:y\:,\:\dfrac{a_2}{x}\:+\:y\:,\:\dfrac{a_3}{x}\:+\:y\:,\:\cdots\:,\:\dfrac{a_n}{x}\:+\:y}∴Newobservations=

x

a

1

+y,

x

a

2

+y,

x

a

3

+y,⋯,

x

a

n

+y

We have to find the new mean of new observations.

\displaystyle{\boxed{\blue{\:\sf\:New\:mean\:=\:\dfrac{Sum\:of\:new\:observations}{No.\:of\:observations\:}}}}

Newmean=

No.ofobservations

Sumofnewobservations

\displaystyle{\implies\sf\:New\:mean\:=\:\dfrac{\dfrac{a_1}{x}\:+\:y\:+\:\dfrac{a_2}{x}\:+\:y\:+\:\dfrac{a_3}{x}\:+\:y\:+\:\dfrac{a_4}{x}\:+\:y\:+\:\cdots\:+\:\dfrac{a_n}{x}\:+\:y}{n}}⟹Newmean=

n

x

a

1

+y+

x

a

2

+y+

x

a

3

+y+

x

a

4

+y+⋯+

x

a

n

+y

\displaystyle{\implies\sf\:New\:mean\:=\:\dfrac{\dfrac{1}{x}\:(\:a_1\:+\:a_2\:+\:a_3\:+\:a_4\:+\:\cdots\:+\:a_n\:)\:+\:n\:y}{n}}⟹Newmean=

n

x

1

(a

1

+a

2

+a

3

+a

4

+⋯+a

n

)+ny

\displaystyle{\implies\sf\:New\:mean\:=\:\dfrac{a_1\:+\:a_2\:+\:a_3\:+\:a_4\:+\:\cdots\:+\:a_n}{x\:n}\:+\:\dfrac{\cancel{n}\:y}{\cancel{n}}}⟹Newmean=

xn

a

1

+a

2

+a

3

+a

4

+⋯+a

n

+

n

n

y

\displaystyle{\implies\sf\:New\:mean\:=\:\underbrace{\pink{\sf\:\dfrac{a_1\:+\:a_2\:+\:a_3\:+\:a_4\:+\:\cdots\:+\:a_n}{n}}}_{m}\:\times\:\dfrac{1}{x}\:+\:y}⟹Newmean=

m

n

a

1

+a

2

+a

3

+a

4

+⋯+a

n

×

x

1

+y

\displaystyle{\implies\sf\:New\:mean\:=\:m\:\times\:\dfrac{1}{x}\:+\:y}⟹Newmean=m×

x

1

+y

\displaystyle{\implies\sf\:New\:mean\:=\:\dfrac{m}{x}\:+\:y}⟹Newmean=

x

m

+y

\displaystyle{\implies\:\underline{\boxed{\red{\sf\:New\:mean\:=\:\dfrac{m\:+\:xy}{x}\:}}}}⟹

Newmean=

x

m+xy

∴ The new mean of new observations is

\displaystyle{\boxed{\red{\sf\:\dfrac{m\:+\:xy}{x}\:}}}

x

m+xy

Answer:

The new mean of new observations is

\displaystyle{\boxed{\red{\sf\:\dfrac{m\:+\:xy}{x}\:}}}

x

m+xy

Step-by-step-explanation:

Let the number of observations be n.

And the observations be a₁, a₂, a₃, a₄,....,aₙ

We have given that,

The mean of certain number of observations is m.

We know that,

\displaystyle{\boxed{\pink{\sf\:Mean\:=\:\dfrac{Sum\:of\:observations}{No.\:of\:observations}}}}

Mean=

No.ofobservations

Sumofobservations

\displaystyle{\implies\sf\:m\:=\:\dfrac{a_1\:+\:a_2\:+\:a_3\:+\:a_4\:+\:\cdots\:+\:a_n}{n}}⟹m=

n

a

1

+a

2

+a

3

+a

4

+⋯+a

n

From the given condition,

Each observation is divided by x ( x ≠ 0 ) and increased by y.

\displaystyle{\therefore\:\sf\:New\:observations\:=\:\dfrac{a_1}{x}\:+\:y\:,\:\dfrac{a_2}{x}\:+\:y\:,\:\dfrac{a_3}{x}\:+\:y\:,\:\cdots\:,\:\dfrac{a_n}{x}\:+\:y}∴Newobservations=

x

a

1

+y,

x

a

2

+y,

x

a

3

+y,⋯,

x

a

n

+y

We have to find the new mean of new observations.

\displaystyle{\boxed{\blue{\:\sf\:New\:mean\:=\:\dfrac{Sum\:of\:new\:observations}{No.\:of\:observations\:}}}}

Newmean=

No.ofobservations

Sumofnewobservations

\displaystyle{\implies\sf\:New\:mean\:=\:\dfrac{\dfrac{a_1}{x}\:+\:y\:+\:\dfrac{a_2}{x}\:+\:y\:+\:\dfrac{a_3}{x}\:+\:y\:+\:\dfrac{a_4}{x}\:+\:y\:+\:\cdots\:+\:\dfrac{a_n}{x}\:+\:y}{n}}⟹Newmean=

n

x

a

1

+y+

x

a

2

+y+

x

a

3

+y+

x

a

4

+y+⋯+

x

a

n

+y

\displaystyle{\implies\sf\:New\:mean\:=\:\dfrac{\dfrac{1}{x}\:(\:a_1\:+\:a_2\:+\:a_3\:+\:a_4\:+\:\cdots\:+\:a_n\:)\:+\:n\:y}{n}}⟹Newmean=

n

x

1

(a

1

+a

2

+a

3

+a

4

+⋯+a

n

)+ny

\displaystyle{\implies\sf\:New\:mean\:=\:\dfrac{a_1\:+\:a_2\:+\:a_3\:+\:a_4\:+\:\cdots\:+\:a_n}{x\:n}\:+\:\dfrac{\cancel{n}\:y}{\cancel{n}}}⟹Newmean=

xn

a

1

+a

2

+a

3

+a

4

+⋯+a

n

+

n

n

y

\displaystyle{\implies\sf\:New\:mean\:=\:\underbrace{\pink{\sf\:\dfrac{a_1\:+\:a_2\:+\:a_3\:+\:a_4\:+\:\cdots\:+\:a_n}{n}}}_{m}\:\times\:\dfrac{1}{x}\:+\:y}⟹Newmean=

m

n

a

1

+a

2

+a

3

+a

4

+⋯+a

n

×

x

1

+y

\displaystyle{\implies\sf\:New\:mean\:=\:m\:\times\:\dfrac{1}{x}\:+\:y}⟹Newmean=m×

x

1

+y

\displaystyle{\implies\sf\:New\:mean\:=\:\dfrac{m}{x}\:+\:y}⟹Newmean=

x

m

+y

\displaystyle{\implies\:\underline{\boxed{\red{\sf\:New\:mean\:=\:\dfrac{m\:+\:xy}{x}\:}}}}⟹

Newmean=

x

m+xy

∴ The new mean of new observations is

\displaystyle{\boxed{\red{\sf\:\dfrac{m\:+\:xy}{x}\:}}}

x

m+xy

Similar questions
Math, 8 months ago