Math, asked by angkit8821, 1 year ago

Car A trails car B by 50 meters. Car B travels at 45km/hr. Car C travels from the opposite direction at 54km/hr. Car C is at a distance of 220 meters from Car B. If car A decides to overtake Car B before cars B and C cross each other, what is the minimum speed at which car A must travel?
36 km/hr
45 km/hr
67.5 km/hr
18 km/hr

Answers

Answered by yusufansari76
0

Step-by-step explanation:

Velocity of car A, vA = 36 km/h = 10 m/s

Velocity of car B, vB = 54 km/h = 15 m/s

Velocity of car C, vC = 54 km/h = 15 m/s

Relative velocity of car B with respect to car A,

vBA = vB – vA

= 15 – 10 = 5 m/s

Relative velocity of car C with respect to car A,

vCA = vC – (– vA)

= 15 + 10 = 25 m/s

At a certain instance, both cars B and C are at the same distance from car A i.e.,

s = 1 km = 1000 m

Time taken (t) by car C to cover 1000 m = 1000 / 25 = 40 s

Hence, to avoid an accident, car B must cover the same distance in a maximum of 40 s.

From second equation of motion, minimum acceleration (a) produced by car B can be obtained as:

s = ut + (1/2)at2

1000 = 5 × 40 + (1/2) × a × (40)2

a = 1600 / 1600 = 1 ms-2

Similar questions