Physics, asked by pradeepkumar9811, 1 month ago

Car is running at 72km/h is slowed down to 18km/h by the application of breaks over a distance of 20m. Find the deceleration of car​

Answers

Answered by Harsh8557
2

Answer:

  • \sf{-9.375 \:m/s^2}

Explanation:

{\underline{\underline{\sf{\red{{{\star}}\:\:\:Given:-}}}}}

\tiny\:\:\:\:\:\:\:\:\bullet\:\:\:\sf\orange{Initial\: velocity \:(u) = 72km/h = \dfrac{72\times5 }{18} = 20m/s}\\\tiny\:\:\:\:\:\:\:\:\bullet\:\:\:\sf\green{Final \ velocity \ (v) = 18km/h = \dfrac{18\times5}{18} = 5m/s}\\\tiny\:\:\:\:\:\:\:\:\bullet\:\:\:\sf\blue{Distance \ covered \ by \ car \ (s) = 20 m}

{\underline{\underline{\sf{\orange{{\star}\:\:\:ToFind:-}}}}}

\tiny\:\:\:\:\:\:\:\:\bullet\:\:\:\sf\purple{Deceleration \ of \ car (a)}

{\underline{\underline{\sf{\blue{{\star}\:\:\: Solution:-}}}}}

\dag\:\underline{\mathfrak{\purple{Using\: 3rd\: equation \:of \:motion }}}

\red{\underline{\boxed{\sf{v^2 = u^2 + 2as}}}}

{\underline{\sf{\:\:\:\:Where,\:\:\:}}}

\tiny\:\:\:\:\bullet\:\:\:\sf\orange{v = final \:velocity}\\ \tiny\:\:\:\:\bullet\:\:\:\sf\green{u = initial \:velocity}\\\tiny \:\:\:\:\bullet\:\:\:\sf\blue{a = acceleration\: or \:deceleration}\\\tiny \:\:\:\:\bullet\:\:\:\sf\red{s = distance}

\dag\:\underline{\mathfrak{\purple{Substituting \: the \: values}}}

\tiny\qquad\quad\rightarrow\:\:\:\:\sf{ 5^2 = 20^2 + 2\times a \times 20}

\tiny\qquad\quad\rightarrow\:\:\:\:\sf{ 25 = 400 + 40a}

\tiny\qquad\quad\rightarrow\:\:\:\:\sf{ 25 -400 = 40a}

\tiny\qquad\quad\rightarrow\:\:\:\:\sf{ -375 = 40a}

\tiny\qquad\quad\rightarrow\:\:\:\:\sf{ \dfrac{-375}{40} = a}

\tiny\qquad\quad\rightarrow\:\:\:\:\sf{ a = -9.375 \:m/s^2}

{\underline{\sf{\:\:\:\:Deceleration \ of \  the \ car \ is \ 9.375 \:m/s^{2}\:\:\:}}}

Similar questions