Math, asked by adwaithprophy, 9 days ago

Case study based
The Shivani wants to make a wall hanging in the shape of an isosceles triangle for her room as shown in figure. She has cut a piece of cardboard with the given measurements. By looking at the cardboard a few questions rose in her mind

Question

Find sinB + cosC
OPTIONS

A - 1/root2
B - 2/1
C - root2
D - 2

Attachments:

Answers

Answered by annurathee152
3

Correct Answer: (d) root2

Given: Triangle ABC is an isosceles triangle with

            AB = AC=5\sqrt{2

            BC=10

To Find: sinB + cosC

Solution: As AD bisects the line BC then, BD=DC=5

             Using pythagoras theorem

       (AB)^{2}=(AD)^{2} + (BD)^{2}

       (5\sqrt{2})^{2}  =(AD)^{2} +(5)^{2}

       50=(AD)^{2}+25\\\\50-25=(AD)^{2}  \\\\25=(AD)^{2} \\\\5=AD

     sinB = AD/AB          sinB = \frac{5}{5\sqrt{2} }                         (1)                                                  

     cosC = DC/AC        cosC=\frac{5}{5\sqrt{2} }                          (2)

                                                     

     From 1 and 2 -

sinB + cosC = \frac{5}{5\sqrt{2} }  +  

                      \frac{10}{5\sqrt{2} }  = \frac{2}{\sqrt{2} } \\\\=  \sqrt{2}

  sinB+sinC=\sqrt{2} = root2

             

Similar questions