Math, asked by vishupoonia123456789, 7 months ago

(CBSE 20
Find the equations of the tangent and normal to the curve x2/3 + y213 = 2 at the point (1, 1).
INCE
Find the equation of the tangent and normal to the mm2​

Answers

Answered by amansharma264
24

EXPLANATION.

 \sf :  \implies \:  = equation \: of \: the \: \: tangent \: and \: the \: normal \: to \: the \: curve \\  \\  \sf :  \implies \:  {x}^{ \dfrac{2}{3} }  + y {}^{ \dfrac{2}{3} }  = 2 \:  \: at \:  \: point \: (1,1)

 \sf :  \implies \: differentiate \: w.r.t \:  \: x \:  \: we \:  \: get, \\  \\ \sf :  \implies \:  \frac{2}{3}x {}^{ (\dfrac{ - 1}{3} )}   +  \frac{2}{3}y {}^{ (\dfrac{ - 1}{3} )} \frac{dy}{dx}   = 0 \\  \\  \sf :  \implies \:  \frac{dy}{dx}  =  \frac{ - x {}^{ \dfrac{ - 1}{3} } }{y {}^{ \dfrac{ - 1}{3} } }  =  \frac{ - y {}^{ \dfrac{1}{3} } }{x {}^{ \dfrac{1}{3} } }

\sf :  \implies \: put \: the \: value \: of \: x \:  \: and \:  \: y \:  \\  \\ \sf :  \implies \:  \frac{dy}{dx}  =  - 1 \\  \\ \sf :  \implies \: slope \: of \: the \: equation \:  =  - 1 \\  \\ \sf :  \implies \: equation \: of \: tangent \\  \\ \sf :  \implies \: (y -  y_{1}) = m(x -  x_{1})

\sf :  \implies \: (y - 1) =  - 1(x - 1) \\  \\ \sf :  \implies \: y  - 1 =  - x + 1 \\  \\ \sf :  \implies \: y  + x - 2 = 0

\sf :  \implies \: equation \: of \: normal \\  \\ \sf :  \implies \: (y -  y_{1}) =  \frac{ - 1}{m} (x -  x_{1}) \\  \\ \sf :  \implies \: (y - 1) = 1(x - 1) \\  \\ \sf :  \implies \: y - 1 = x - 1 \\  \\ \sf :  \implies \: y - x = 0

Answered by Anonymous
18

Given:

 \rm \bullet  {x}^{ \frac{2}{3} }  +  {y}^{ \frac{2}{3} } = 2

Find:

  • Eq. of Tangent and normal to the curve at the point (1,1)

Solution:

The curve is given as

 :\to \rm  {x}^{ \frac{2}{3} }  +  {y}^{ \frac{2}{3} }  = 2

\qquad Differentiate above writ x

 \rm \dashrightarrow  \dfrac{2}{3}  {x}^{  \frac{ - 1}{3} }  + \dfrac{2}{3}  {y}^{  \frac{ - 1}{3} } \dfrac{dy}{dx} = 0 \\  \\  \\

  \sf \implies \dfrac{2}{3}  {y}^{  \frac{ - 1}{3} } \dfrac{dy}{dx} =   \dfrac{ - 2}{3}  {x}^{  \frac{ - 1}{3} }  \\  \\  \\

  \sf \implies \dfrac{dy}{dx} =   \dfrac{ - 2}{3}  {x}^{  \frac{ - 1}{3} }    \times \dfrac{3}{2}  {y}^{  \frac{1}{3} } \\  \\  \\

  \sf \implies \dfrac{dy}{dx} =   \dfrac{ - 2}{3}   \times {x}^{  \frac{ - 1}{3} }    \times \dfrac{3}{2}  {y}^{  \frac{1}{3} } \\  \\  \\

  \sf \implies \dfrac{dy}{dx} =  -  {x}^{  \frac{ - 1}{3} }    \times{y}^{  \frac{1}{3} } \\  \\  \\

  \sf \implies \dfrac{dy}{dx} =   - \dfrac{{y}^{  \frac{1}{3} }}{ {x}^{  \frac{1}{3} } } \qquad  \big\lgroup{ \because  {a}^{ - 2} =  \dfrac{1}{ {a}^{2} } } \big\rgroup \\  \\  \\

  \sf \implies \dfrac{dy}{dx} =   -  {\bigg(\dfrac{y}{x}  \bigg)}^{ \frac{1}{3} } \qquad  \big\lgroup{ \because   \dfrac{{a}^{2}}{ {b}^{2} }=  {\bigg(\dfrac{a}{ {b}} } \bigg)}^{2}  \big\rgroup \\  \\  \\

  \sf \implies \dfrac{dy}{dx} =   -  {\bigg(\dfrac{y}{x}  \bigg)}^{ \frac{1}{3} }  \\  \\  \\

  \to\sf Slope \: of \: tangent \: to \: curve=   -  {\bigg(\dfrac{y}{x}  \bigg)}^{ \frac{1}{3} } \: at \: point(1,1) \\  \\

Slope = - 1

Hence, Equation of Tangent at point (1,1) with slope - 1 is

\rm\implies y - 1 =  - 1(x  - 1) \\  \\

\rm\big \lgroup{ \therefore using  \: y -  y_{1} = m(x -  x_{1})  } \big \rgroup \\  \\

\rm\implies y - 1 =  - 1(x  - 1) \\  \\  \\

\rm\implies y - 1 =  - x   + 1\\  \\  \\

\rm\implies y - 1  - 1=  - x  \\  \\  \\

\rm\implies y - 2=  - x  \\  \\  \\

\rm\implies x + y - 2=  \\  \\  \\

\rm\implies x + y - 2= 0 \\  \\  \\

 \rule{289}{1.6}

we, know that

 \rm \to Slope \: of \: Normal =  \dfrac{ - 1}{Slope \: of \: tangent}  = 1 \\  \\

So,

Eq. of Normal at (1,1) with slope 1 is

 \rm  :\dashrightarrow (y - 1) = (x - 1) \\  \\

 \rm  :\dashrightarrow y - 1 = x - 1  \\  \\

 \rm  :\dashrightarrow y = x  \\  \\

 \rm  :\dashrightarrow y -  x = 0 \\  \\

 \rule{289}{2}

 \rm \therefore Equation \: of \: tangent \: is \: x + y - 2 = 0 \\  \\

 \rm and \:  Equation \: of \: normal \: is \: y - x= 0 \\  \\

Similar questions