Math, asked by bambamraj26, 1 month ago

[CBSE 2006]
12. A number consisting of two digits is seven times the sum of its digits.
When 27 is subtracted from the number, the digits are reversed. Find
the number.​

Answers

Answered by utkarshdhage100
0

Answer:

27 is the answer of these que tions

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:Let-\begin{cases} &\sf{ones \: digit \:  =  \: x} \\ &\sf{tens \: digit \:  =  \: y} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:So-\begin{cases} &\sf{Number \: formed = 10y + x} \\ &\sf{Reverse \: number = 10 x+y } \end{cases}\end{gathered}\end{gathered}

According to statement

A number consisting of two digits is seven times the sum of its digits.

\rm :\longmapsto\:10y + x = 7(x + y)

\rm :\longmapsto\:10y + x = 7x + 7y

\rm :\longmapsto\:10y - 7y = 7x - x

\rm :\longmapsto\:3y = 6x

\bf :\longmapsto\:y = 2x -  -  - (1)

According to statement again,

When 27 is subtracted from the number, the digits are reversed.

\rm :\longmapsto\:10y + x - 27 = 10x + y

\rm :\longmapsto\:10y + x -10x  -  y = 27

\rm :\longmapsto\:9y  -9x = 27

\rm :\longmapsto\:9(y  -x)= 27

\rm :\longmapsto\:y  -x= 3

\rm :\longmapsto\:2x  -x= 3

\bf :\longmapsto\:x = 3 -  -  - (2)

On substituting the value of x in equation (1), we get

\rm :\longmapsto\:y = 2 \times 3

\bf :\longmapsto\:y = 6

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:Hence-\begin{cases} &\sf{ones \: digit \:  =  \: 3} \\ &\sf{tens \: digit \:  =  \: 6} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:So-\begin{cases} &\sf{Number \: formed = 10y + x = 63} \\ &\sf{Reverse \: number = 10 x+y = 36 } \end{cases}\end{gathered}\end{gathered}

Hence, The required two digit number is 63.

Similar questions