CBSE CLASS X
MATHEMATICS
The vertices of ∆ ABC are A(4,6), B(1,5) and C(7,2). A line segment DE is drawn to intersect the sides AB and AC at D and E respectively such that AD/AB = AE/AC = 1/3. Calculate the area of ∆ADE and compare it with the area of ∆ABC.
Answers
Question :-
The vertices of ∆ ABC are A(4,6), B(1,5) and C(7,2). A line segment DE is drawn to intersect the sides AB and AC at D and E respectively such that AD/AB = AE/AC = 1/3. Calculate the area of ∆ ADE and compare it with the area of ∆ABC.
Answer :-
Given :
AD/BB = AE/AC 1/3
In Δ ADE and Δ ABC :
∠DAE = ∠BAC [ Common ]
AD/AB = AE/AC [ Given ]
Hence : Δ AED ≈ Δ ABC [ S.A.S criteria ]
Thus :
( Area of Δ AED ) / ( Area of Δ ABC ) = AD² / AB²
==> ( Area of Δ AED ) / ( Area of Δ ABC ) = 1² / 3²
==> ( Area of Δ AED ) / ( Area of Δ ABC ) = 1 / 9
Thus the ratio of ( Area of Δ AED ) : ( Area of Δ ABC ) = 1 : 9
Area of Δ ADE
Finding the coordinates of E and D
AD : AB = 1 : 3
AD / AB = 1/3
==> AD = AB/3
==> AB = 3 AD
AD + BD = AB
==> AD + BD = 3 AD
==> BD = 3 AD - AD
==> BD = 2 AD
==> BD / AD = 2 / 1
By invertendo we have AD / BD = 1 / 2
==> AD : BD = 1 : 2
Same way :- AE : EC = 1 : 2
Use section formula :
Finding the coordinates of D
A ( 4 , 6 ) ------------ D ( x , y ) --------------------------------B ( 1 , 5 )
1 2
Here we get :
x₁ = 4
x₂ = 1
y₁ = 6
y₂ = 5
m : n = 1 : 2
m = 1
n = 2
x = ( m x₂ + n x₁ ) / ( m + n )
==> x = ( 1 × 1 + 2 ×4 ) / ( 2 + 1 )
==> x = ( 1 + 8 ) / 3
==> x = 9 / 3
==> x = 3
y = ( m y₂ + n y₁ ) / ( m + n )
==> y = ( 1.5 + 2.6 ) / ( 2 + 1 )
==> y = ( 5 + 12 ) / 3
==> y = 17 / 3
Hence D = ( 3 , 17 / 3 )
Finding the coordinates of E
A ( 4 , 6 ) ------------- E ( x , y ) ------------------------------C ( 7 , 2 )
1 2
Here the values will be :
x₁ = 4
x₂ = 7
y₁ = 6
y₂ = 2
m : n = 1 : 2
m = 1
n = 2
x = ( m x₂ + n x₁ ) / ( m + n )
==> x = ( 1 × 7 + 2 × 4 ) / ( 1 + 2 )
==> x = ( 7 + 8 ) / 3
==> x = 15 / 3
==> x = 5
y = ( m y₂ + n y₁ ) / ( m + n )
==> y = ( 1 × 2 + 2 × 6 ) / ( 1 + 2 )
==> y = ( 2 + 12 ) / 3
==> y = 14 / 3
So E = ( 5 , 14 / 3 )
Finding the area of Δ ADE
x₁ = 4
x₂ = 3
x₃ = 5
y₁ = 6
y₂ = 17 / 3
y₃ = 14 / 3
Area of ADE = 1/2 | x₁ ( y₂ - y₃ ) + x₂ ( y₃ - y₁ ) + x₃ ( y₁ - y₂ ) |
= 1/2 | 4 ( 17/3 - 14/3 ) + 3 ( 14/3 - 6 ) + 5 ( 6 - 17/3 ) |
= 1/2 | 4 ( 3/3 ) + 3 ( 14 - 18 )/3 + 5 ( 18 - 17 )/3 |
= 1/2 | 4 × 1 + 3 × ( -4/3 ) + 5 × 1/3 |
= 1/2 | 4 - 4 + 5 / 3 |
= 1/2 × | 0 + 5/3 |
= 1/2 × 5/3
= 5/6
(i) The area of Δ ADE is 5/6 units²
(ii) ( Area of Δ AED ) : ( Area of Δ ABC ) = 1 : 9
__________________________________________________________
Here,
Given
➩ AD/AB = 1/3
➩ AD/(AD + BD) = 1/3
➩ 3AD = AD + BD
➩ 3AD — AD = BD
➩ 2AD = BD
➩ 2AD/BD = 1
➩ AD/BD = 1/2 = AE/EC
Now,
, We shall find out the
coordinates of point 'D' using
section formula
Let the coordinates of point
'D' be (x , y)
Now,
➩ x = (8 + 1)/3 ➩ 9/3 ➩ 3
➩ y = (12 + 5)/3 ➩17/3
So, coordinates of point 'D' are (3, 17/3)
Now,
, We shall find out the
coordinates of point 'E' using
section formula
Let the coordinates of point
'E' be (a , b)
Now,
➩ a = (8 + 7)/3 ➩ 15/3 ➩ 5
➩ b = (12 + 2)/3 ➩14/3
So, coordinates of point 'D' are (5, 14/3)
Now, ar(∆ ADE)
➩ 1 / 2 │ [ 4 (17/3 - 14/3) + 3
(14/3 - 6) + 5 (6 - 17/3) ] │
➩ 1/2 │ [ 4 - 4 + 5/3 ] │
➩ 1/2 │ [ 5/3 ] │
➩ 1/2 × 5/3 = 5/6 unit sq.
Now, ar(∆ABC)
➩ 1 / 2 │ [ 4 (5 -2 ) + 1 (2 - 6) + 7
(6 - 5) ] │
➩ 1 / 2 │ [ 4 (3) + 1 (-4) + 7 (1) ] │
➩ 1 / 2 │ [ 12 - 4 + 7 ] │
➩ 1 / 2 │ [ 12 + 3 ] │
➩ 1 / 2 × 15 = 15/2 unit sq
❣❣HOPE IT HELPS U ❣❣
❣❣PLEASE MARK MY ANSWER AS BRAINLILIST ❣❣
❣❣THANKS ❣❣
☺☺☺