centre (a cos alfa,a sin alfa) and radius a
find the equation of circle
Answers
Answered by
1
Step-by-step explanation:
Given (a cos alpha ‚a sin alfa )
radius = r^2a
eqn of circle :( x - xo )^2 +( y -yo) ^2 = r^2
= ( x - a cos alfa )^2 + ( y - a sin alfa )^2 = a^2
x^2 + y^2 - 2 a cos alfa - a sin alfa + a^2(cos^2 alfa + sin^2 alfa ). = a^2
x^2 +y^2 - 2 a cos alfa - a sin alfa + a^2 =a^2.
«a cos^2 alfa +a sin^2 alfa = 1 »
x^2 + y^2 - 2acosalfa - 2 asin alfa = 0
hence proved
Similar questions