Centroid of a triangle abc in which a(a,b) b(b,c) c(c,a) is at the origin then calculate the value of a
Answers
Answered by
0
we know that;
(x1+x2+x3÷3); (y1+y2+y3÷3)
x1 = a ; x2 = b ; x3 = c
y1 = b ; y2 = c ; y3 = a
a+b+c÷3=a ; b+c+a÷3=a
a+b+c=3a ; b+c+a=3a
b+c=2a ; b+c=2a
b+c÷2=a ; b+c÷2=a
so, therefore a= b+c÷2
(x1+x2+x3÷3); (y1+y2+y3÷3)
x1 = a ; x2 = b ; x3 = c
y1 = b ; y2 = c ; y3 = a
a+b+c÷3=a ; b+c+a÷3=a
a+b+c=3a ; b+c+a=3a
b+c=2a ; b+c=2a
b+c÷2=a ; b+c÷2=a
so, therefore a= b+c÷2
Similar questions