Physics, asked by Anonymous, 6 months ago

Certain force acting on a 30 kg mass changes its velocity from 12 ms^-1 to 15ms^-1.Calculate the work done by the force.

Answers

Answered by Anonymous
18

To Find :-

  • The work done by the force.

Solution :-

Initial velocity (u) = 12 ms-¹

Final velocity (v) = 15 ms-¹

Mass (m) = 30 kg

According to the Work - Energy theorem,

Work done = Change in kinetic energy

\red\bigstar W = ΔK.E

[ Put the values ]

 \longrightarrow \sf \: W =  \frac{1}{2} m(v {}^{2}  - u {}^{2} )

\longrightarrow \sf \: W =  \frac{1}{2}  \times 30(15 {}^{2}  - 12 {}^{2} )

\longrightarrow \sf \: W = 15(225- 144)

\longrightarrow \sf \: W = 15(81)

\longrightarrow \sf \: W = 1215 \: joule \: \:   \green \bigstar

Therefore,

The work done by the force is 1215 J.

Answered by Mister360
4

Explanation:

Given:-

initial velocity =u={12ms}^{-1}

final velocity =v={15ms}^{-1}

mass=m=30kg

To find:-

work done by force=W

Solution :-

as we know

{:}\longrightarrow {\boxed {work\:done=change \:in\:kinetic\:Energy}}

{:}\longrightarrow {\boxed{W={\triangle}K.E}}

{:}\longrightarrow {\frac{1}{2}}m ({v}^{2}-{u}^{2})

{:}\longrightarrow {\frac {1}{{\cancel{2}}}}×{\cancel{30}}×({15}^{2}-{12}^{2})

{:}\longrightarrow 15(225-144)

{:}\longrightarrow 15×81

{:}\longrightarrow 1215Joule

{:}\longrightarrow {\underline{\boxed{\bf {W=1215J}}}}

Similar questions